• Title/Summary/Keyword: Fsall tumor

Search Result 6, Processing Time 0.016 seconds

Effects of 2-Deoxy-D-Glucose on Metabolic Status, Proliferative Capacity and Growth Rate of FSall Tumor: Observations made by In Vivo $^{31}P$-Nuclear Magnetic Resonance Spectroscopy and Flow Cytometry (2-DDG가 FSa II 종양의 성장속도와 증식 능력, 신진대사에 미치는 영향 ; $^{31}P$-자기공명 분광기와 유세포 분석기를 이용한 연구)

  • Chang Hyesook;Choi Eun Kyung;Cho Jeong Gill;Lim Tee-Hwon;Lee Tae-Keun;Yi Yun;Cho Young Joo;Kim Gon Sup
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • The effect of 2-deoxy-d-glucose (2-DDG) on $C_3H$ mouse fibrosarcoma(FSall) was studied. Metabolic status, especially for energy metabolism, was studied using in vivo $^{31}P$-MRS, proliferative capacity was observed on flow cytometry(FC) and growth rate was measured after transplantation of $10^6$ viable tumor cells in the dorsum of foot of $C_3Hf/Sed$ mice. One gram of 2-DDG Per kg of body weight was injected intraperitoneally on 12th day of implantation. Average tumor size on 12th day of implantion was $250mm^3$. Growth rate of Fsall tumor was measured by tumor doubling time and slope on semilog plot. After 2-DDG injection, growth rate slowed down. Tumor doubling time between tumor age 5-12 days was 0.84 days with slope 0.828 and tumor doubling time between tumor age 13-28 days was 3.2 days with slope 0.218 in control group. After 2-DDG injection, tumor doubling time was elongated to 5.1 days with slope 0.136. The effect of 2-DDG studied in vivo $^{31}P$-MRS suggested that the increase of phosphomonoester (PME) and inorganic phosphate (Pi) by increasing size of tumor, slowed down after 2-DDG injection. Flow cytometry showed significantly increased S-phase and $G_2+M$ phase fraction suggesting increased proliferative capacity of tumor cells in the presence of 2-DDG. Authors observed an interesting effect of 2-DDG on FSall tumor and attempt to utilize as an adjunct for radiotherapy.

  • PDF

Effect of Increased Intracellular pH by HMA on the Cytotoxicity of Combined Treatment of Hyperthermia and Chemotherapy (HMA의 세포내 산도증가가 온열과 항암화학 치료의 세포독성에 미치는 효과)

  • Hur, Won-Joo;Song, Chang-Won
    • Radiation Oncology Journal
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 1995
  • Purpose: The enhanced cytotoxic effect of combined treatment of hyper-thermia and chemotherapy by increasing intracellular acidity with HMA was investigated. Materials and Methods: FSall tumor cells were injected on the hindlegs of female $C_3H$ mice. When the tumor volume reached about 200mm3, experiments were performed on the groups classified as follows: Group I :Control, Group II : Melphalan alone (2.5mg/kg, 5mg/kg, 10mg/kg, 15mg/kg), Group III : Heat alone $(42.5^{\cdot}C$ for 1 hour) Group IV : Melphalan + Heat $(42.5^{\cdot}C$ for 1 hour), Group V : HMA(10mg/kg) + Melphalan(5.0mg/kg) + Heat$(42.5^{\cdot}C$ for 1hour). Each group included 8-12 mice on each experiment HMA (3-amino-6-chloro-5-(1-homopiperidyl )-N-(diaminomethylene) -c-pyrazinecarboxamide), an analog of amiloride which increases intracellular pH(pHi) was dissolved in dimethyl sulfoxide (DMS) and injected into the tumor-bearing mice through the tail vein. 10mg/kg of HMA and each dose of melphalan were injected into peritoneum of the tumor-bearing mice 30 minutes before heating. Tumor growth delay was calculated when the tumor volme reached at $1500mm^3$ Excision assay was performed on each group and repeated 2-4 times. Results : Tumor growth delay of each experimental groups at $1500mm^3$ were 9, 10, 13 and 19 days respectively. In vivo-in vitro excision assay using FSall tumor cells, the cytotoxicity of each experimental groups was $1.2{\times}10^7,\;1{\times}10^7,\;6{\times}10^6,\;1.7{\times}10^6\;and\;1{\times}10^5$ clonogenic cells/gm respectively When HMA was added to the combined treatment of heat and .chemotherapy, the tumor growth was delayed more than combined treatment without HMA i.e., 6 days tumor growth delay at $1500mm^3$ of tumor volume. Conclusion: The combined effect of cytotoxicity by heat and chemotherapy can be much more enhanced by HMA.

  • PDF

Anti-tumor Effect of Combined Betacarotene with X-irradiation in the Mouse Fibrosarcoma : Cytotoxicity and Tumor Growth Delay (쥐 섬유육종에서 베타카로틴과 방사선조사 병용의 항종양 효과: 세포독성 및 종양성장 지연에 미치는 영향)

  • Kwon Hyoung-Cheol;Yang Moon-Sik
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • Purpose :To investigate whether combined beta-carotene with X-Irradiation has more enhanced radition response than X-irradiation or not, we peformed a experiment about in vitro cytotoxlcity of beta-carotene and/or X-irradiation in the fibrosarcoma cells, tumor growth delay of combined beta-caroten with/or X-irradiation in the mouse fibrosarcoma. Materials and Methods : 2$\%$ emulsion of beta-carotene was serially diluted and used. X-Irradiation was given by 6 MeV linear accelerator. The cytotoxicity of beta-carotene in vitro was evaluated from clonogenic assay. To compare the cytotoxiclty between combined beta-carotene with X-irradiation and X-irradiation group, 2 mg/ml of beta-carotene was contacted to fibrosarcoma (FSall) cells for 1 hour before X-irradiation. For the tumor growth delay, single 20 Gy was given to FSall tumor hearing C3H/N mice whic was classified as beta-crotene with X-irradiation group (n=5) and X-irradiation alone group (n=5). 0.2 ml of 20 mg/kg of beta-carotene were i.p. injected to mice 30 minute before X-irradiation in the beta-crotene with X-irradiation group. The tumor growth delay defined as the time which reach to 1,000 mm$^{3}$ of tumor volume. Results : (1) Cytotoxicity in vitro: 1) survival fraction at beta-carotene concentration of 0.002,0.02,0.2 and 2 mg/ml were 0.69$\pm$0.07, 0.59$\pm$0.08, 0.08$\pm$0.008 and 0.02$\pm$0.006, respectively. 2) each survival fraction at 2, 4, 6 and 8 Gy in the 2 mg/ml of beta-carotene + X-irradiation group were 0.13$\pm$0.05, 0.03$\pm$0.005, 0.01 $\pm$0.002 and 0.009$\pm$0.0008, respectively. But each survival fraction at same irradiation dose in the X-irradiation group were 0.66$\pm$0.05, 0.40$\pm$0.04, 0.11$\pm$0.01 and 0.03$\pm$0.006, respectively(p<0.05). (2) The time which reach to 1,000 mm$^{3}$ of tumor volume of beta-carotene + X-irradiation group and X-irradiation alone group were 18, 19 days, respectively(p>0.05) Conclusion : The contact of beta-caroten to Fsall cells showed mild cytotoxicity which 띤as increased according to concentration. The cytotoxicity of combined beta-carotene with X-irradiation more increased than that of X-irradiation, additionally, And there was significant difference of cytotoxicity between two groups. But there were no significant difference of the growth delay of fibrosarcoma between two groups.

  • PDF

The Effect of Ginkgo Biloba Extract on the Fractionsted Radiation Therapy in C3H Mouse Fibrosarcoma (Ginkgo Biloba Extract가 C3H 마우스 섬유육종의 분할 방사선치료에 미치는 영향)

  • Kim, Jong-Hoon;Ha, Sung-Whan;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • Purpose : A ginkgo biloba extract (GBE) has been known as a hypoxic cell radiosensitizer. Its mechanisms of action are increase of the red blood cell deformability, decrease the blood viscosity, and decrease the hypoxic cell fraction in the tumor. The aims of this study were to estimate the effect of GBE on fractionated radiotherapy and to clarify the mechanism of action of the GBE by estimating the blood flow in tumor and normal muscle. Materials and Methods : Fibrosarcoma (FSall) growing in a C3H mouse leg muscle was used as the tumor model. When the tumor size reached 7 mm in diameter, the GBE was given intraperitoneally at 1 and 25 hours prior to irradiation. The tumor growth delay was measured according to the various doses of radiation (3, 6, 9, 12 Gy and 15 Gy) and to the fractionation (single and fractionated irradiation) with and without the GBE injection. The radiation dose to the tumor the response relationships and the enhancement ratio of the GBE were measured. In addition, the blood flow of a normal muscle and a tumor was compared by laser Doppler flowmetry according to the GBE treatment. Results : When the GBE was used with single fraction irradiation with doses ranging from 3 to 12 Gy, GBE increased the tumor growth delay significantly (p<0.05) and the enhancement ratio of the GBE was 1.16. In fractionated irradiation with 3 Gy per day, the relationships between the radiation dose (D) and the tumor growth delay (TGD) were TGD $(days)=0.26{\times}D$ (Gy)+0.13 in the radiation alone group, and the TGD $(days)=0.30{\times}D$ (Gy)+0.13 in the radiation with GBE group. As a result, the enhancement ratio was 1.19 ($95\%$ confidence interval; $1.13\~1.27$). Laser Doppler flowmetry was used to measure the blood flow. The mean blood flow was higher in the muscle (7.78 mL/100 g/min in tumor and the 10.15 mL/100 g/min in muscle, p=0.005) and the low blood flow fraction (less than 2 mL/100 g/min) was higher in the tumor $(0.5\%\;vs.\;5.2\%,\;p=0.005)$. The blood flow was not changed with the GBE in normal muscle, but was increased by $23.5\%$ ( p=0.0004) in the tumor. Conclusion : Based on these results, it can be concluded that the GBE enhanced the radiation effect significantly when used with fractionated radiotherapy as well as with single fraction irradiation. Furthermore, the GBE increased the blood flow of the tumor selectively.

Enhancement of in vivo Radiosensitization by Combination with Pentoxifylline and Nicotinamide (Pentoxifylline과 Nicotinamide의 병용에 의한 생체내 방사선 감수성 증강 효과)

  • Lee Intae;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 1991
  • Pentoxifylline (PENTO) has been known to improve RBC fluidity, and thus improve the flux of RBC through narrow capillaries. Additionally, PENTO also decreases the $O_2$ affinity of hemoglobin by increasing 2,3-DPG levels, thereby increasing the $O_2$ release from RBC. Nicotinamide (NA) has been reported to decrease the number of acutely hypoxic cells in tumors by temporarily increasing tumor blood flow. Therefore, the purpose of this study was to examine whether the combination of PENTO and NA (PENTO+NA) would reduce the radioresistance of the Fsall murine fibrosarcoma by oxygenating the hypoxic cells. We obsewed a significantly enhanced radiation-induced growth delay of the FSaII tumors by PENTO+NA. Thus the enhancement ratio was between 2.5 and 2.8 in growth delay assay. The $TCD_{50}$ of control tumors was about 57 Gy, but that of PENTO+NA treated tumors was about 32Gy. Thus $TCD_{50}$ was modified by a factor of 1.8. We also observed that PENTO+NA exerted no effect on the radiation-induced skin damage after the legs without bearing tumors were exposed to X-irradiation. In order to clarify radiosensitizing effects of PENTO+ NA, changes in tumor blood flow and intratumor pOf were measured using laser Doppler flowmetry and $O_2$ microelectrode methods. The tumor blood flow significantly increased at 10 min. after injection of PENTO+ NA. Furthermore, we also found that PENTO+ NA significantly increased intratumor $pO_2$ from 8 to 19 mmHg. We concluded that PENTO+MA was far more effective than NA alone or PENTO alone. The increase in the response of tumors in vivo to X-irradiation appeared to be due mainly to an increase in the tumor oxygenation. Further studies using various concentrations of PENTO alone and in combination with NA to obtain better sequencing and maximal radiosensitization are warranted.

  • PDF

The Effect of Gingko Biloba Extract on Energy Metabolic Status in C3H Mouse Fibrosarcoma : Evaluated by in vivo $^{31}P$ Magnetic Resonance Spectroscopy (Gingko biloba extract가 C3H 마우스 섬유육종의 에너지 대사 상태에 미치는 영향 : 생체내 $^{31}P$ 자기공명 분광법을 이용한 분석)

  • Ha Sung Whan;Kim Won Dong;Ahn Yong Chan;Park Chan Il;Lim Tae Hwan;Lee Tae Kuen
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.147-154
    • /
    • 2002
  • Purpose : Gingko biloba extract (GBE), a natural product extracted from Gingko leaves, is known to increase the radiosensitivity of tumors. This radiosensitization probably arises from the increase in the peripheral blood flow by decreasing the blood viscosity and relaxing the vasospasm. The influence of a GBE on the metabolic status in fibrosarcoma II (FSall) of a C3H mouse was investigated using $^{31}P$ magnetic resonance spectroscopy (MRS). Materials and Methods : Eighteen C3H mice with fibrosarcoma II $(from\;100\;mm^3\;to\;130\;mm^3)$ were prepared for this experiment. The mice were divided into 2 groups; one (9 mice) without a priming dose, and the other (9 mice) with a priming dose of GBE. The GBE priming dose (100 mg/kg) was administered by an intraperitoneal (i.p.) injection 24 hours prior to the measurement. First $^{31}P$ MRS spectra were measured in the mice from each group as a baseline and test dose of GBE (100 mg/kg) was then administered to each group. One hour later, the $^{31}P$ MRS spectra were measured again to evaluate the change in the energy metabolic status. Results : In the group without the priming dose, the mean pH, PCr/Pi, PME/ATP, Pi/ATP, PCr/(Pi+PME) values 1 hour after the test dose were not changed significantly compared to the values at the baseline. However, in the group with the priming dose, the mean PCr/Pi, Pi/ATP, PCr/(Pi+PME) values 1 hour after the test dose changed from the baseline values of 0.49, 0.77, 0.17 to 0.74, 0.57, 0.28 respectively. According to the paired t-test, the differences were statistically significant. Conclusion : The above findings suggest that the metabolic status is significantly improved after administering GBE if the priming dose is given 24 hours earlier. This shows that the radiosensitizing effect of GBE is based on the increase of tumor blood flow and the improvement in the metabolic status.