• 제목/요약/키워드: Fruiting Body Differentiation

검색결과 7건 처리시간 0.02초

팽이버섯의 자실체형성 초기과정에서 특이적으로 발현하는 유전자의 클로닝 (Cloning of a Gene Specifically Expressed During Early Stage of Fruiting Body Formation in Flammulina velutipes)

  • 김둘이;동지칙
    • 한국균학회지
    • /
    • 제27권3호통권90호
    • /
    • pp.187-190
    • /
    • 1999
  • 팽이버섯의 자실체 분화 과정에서 특이적으로 발현하는 유전자 분리를 위한 cDNA library는 발이처리 후 7일째 배양한 균사체의 mRNA에 의해 만들어졌다. cDNA클론 FVFD16(Flammulina velutipes fruiting body differentiation)은 자실체 분화 과정에서 특이적으로 발현되는 클론으로 differential screening에 의해 선발되었다. Northern 분석에 의해 FVFD16의 발현 특성을 관찰한 결과, 1일과 4일째의 균사체에서 현저한 발현량을 나타내었다. FVFD16의 염기 서열을 검색한 결과, FVFD16의 mRNA는 open reading frame을 포함한 128의 아미노산 잔기(13.5kDa)를 가진 단백질로 추정되었다.

  • PDF

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.

A Lectin with Mycelia Differentiation and Antiphytovirus Activities from the Edible Mushroom Agrocybe aegerita

  • Sun, Hui;Zhao, Chen Guang;Tong, Xin;Qi, Yi Peng
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.214-222
    • /
    • 2003
  • A lectin named AAL has been purified from the fruiting bodies of the edible mushroom Agrocybe aegerita. AAL consisted of two identical subunits of 15.8 kDa, its pI was about 3.8 determined by isoelectric focusing, and no carbohydrate was discerned. Being treated by pyrogultamate aminopeptidase, the blocked N-terminus of AAL was sequenced as QGVNIYNI. AAL agglutinated human and animal erythrocytes regardless of blood type or animal species. Its hemagglutinating activity was unaffected by acid or alkali treatment and demetalization or addition of divalent metals $Mg^{2+}$, $Ca^{2+}$ and $Zn^{2+}$. AAL was toxic to mice: its LD50 was 15.85 mg per kilogram body weight by intraperitoneal injection. In this study, two novel activities of AAL were proved. It showed inhibition activity to infection of tobacco mosaic virus on Nicotiana glutinosa. The result of IEF suggested that AAL attached to TMV particles. Mycelia differentiation promotion was the other interesting activity. AAL promoted the differentiation of fruit body primordia from the mycelia of Agrocybe aegerita and Auricularia polytricha. AAL antiserum was prepared and immunologically cross-reactived with several proteins from five other kinds of mushrooms. These results suggested that AAL probably was a representative of a large protein family, which plays important physiological roles in mushroom.

Identification and Functional Analysis of Mating Type Loci in the Pleurotus eryngii

  • Ryu, Jae San;Kim, Min-Keun;Park, Bokyung;Ali, Asjad;Joung, Wan-Kyu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.35-35
    • /
    • 2015
  • Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  • PDF

Molecular Genetics of Emericella nidulans Sexual Development

  • Han, Kap-Hoon
    • Mycobiology
    • /
    • 제37권3호
    • /
    • pp.171-182
    • /
    • 2009
  • Many aspergilli that belongs to ascomycetes have sexuality. In a homothallic or self-fertile fungus, a number of fruiting bodies or cleistothecia are formed in a thallus grown from a single haploid conidia or ascospores. Genome-sequencing project revealed that two mating genes (MAT) encoding the regulatory proteins that are necessary for controlling partner recognition in heterothallic fungi were conserved in most aspergilli. The MAT gene products in some self-fertile species were not required for recognition of mating partner at pheromone-signaling stage but required at later stages of sexual development. Various environmental factors such as nutritional status, culture conditions and several stresses, influence the decision or progression of sexual reproduction. A large number of genes are expected to be involved in sexual development of Emericella nidulans (anamorph: Aspergillus nidulans), a genetic and biological model organism in aspergilli. The sexual development process can be grouped into several development stages, including the decision of sexual reproductive cycle, mating process, growth of fruiting body, karyogamy followed by meiosis, and sporulation process. Complicated regulatory networks, such as signal transduction pathways and gene expression controls, may work in each stage and stage-to-stage linkages. In this review, the components joining in the regulatory pathways of sexual development, although they constitute only a small part of the whole regulatory networks, are briefly mentioned. Some of them control sexual development positively and some do negatively. Regarding the difficulties for studying sexual differentiation compare to asexual one, recent progresses in molecular genetics of E. nidulans enlarge the boundaries of understanding sexual development in the non-fertile species as well as in fertile fungi.

Cloning and Expression Analysis of Phenylalanine Ammonia-Lyase Gene in the Mycelium and Fruit Body of the Edible Mushroom Flammulina velutipes

  • Yun, Yeo Hong;Koo, Ja Sun;Kim, Seong Hwan;Kong, Won Sik
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.327-332
    • /
    • 2015
  • Phenylalanine ammonia-lyase (PAL) gene is known to be expressed in plants, and is involved in the differentiation, growth and synthesis of secondary metabolites. However, its expression in fungi remains to be explored. To understand its expression in mushroom fungi, the PAL gene of the edible mushroom Flammulina velutipes (Fvpal) was cloned and characterized. The cloned Fvpal consists of 2,175 bp, coding for a polypeptide containing 724 amino acids and having 11 introns. The translated amino acid sequence of Fvpal shares a high identity (66%) with that of ectomycorrhizal fungus Tricholoma matsutake. Distinctively, the Fvpal expression in the mycelium was higher in minimal medium supplemented with L-tyrosine than with other aromatic amino acids. During cultivation of the mushroom on sawdust medium, Fvpal expression in the fruit body correspondingly increased as the mushroom grew. In the fruiting body, Fvpal was expressed more in the stipe than in the pileus. These results suggest that F. velutipes PAL activity differs in the different organs of the mushroom. Overall, this is first report to show that the PAL gene expression is associated with mushroom growth in fungi.

Studies on Constituents of Higher Fungi of Korea (LXXI) -Application of Enzymes to Taxonomy of Ganoderma Species-

  • Kim, Byong-Kak;Kim, Jin-Sook;Choi, Kyun-Gae;Kim, Ha-Won;Choi, Eung-Chil
    • 생약학회지
    • /
    • 제24권2호
    • /
    • pp.116-123
    • /
    • 1993
  • The genus Ganoderma is typical wood-rotting fungi and its fruiting body has been used as an important herb in oriental medicine. Recent research discovered antitumor components from Ganoderma lncidum. Various Ganoderma species are being cultivated in Korea. However, taxonomic system of the genus Ganoderma has been based mainly on the macromorphology of fruiting bodies and the ultrastructural characteristics of basidiospores. Since there are similar characteristics in Ganoderma mycelia grown on the same artificial media, it is suggested that the compatibility of the fungi by di-mon mating be used as an aid to determine the identity of species in addition to the conventional characterization. In this study, we examined physiological and genetical properties such as growth temperature, pH, compatibility and enzyme or protein patterns of laccase, esterase and cellular proteins of G. lucidum RZ, G. tsugae and Ganoderma species cultivated in Korea by electrophoresis for characterization of the isolates. We found that compatibility test and isozyme patterns of laccase and esterase of the mycelia could be used for the differentiation of the isolates. These results showed that Ganoderma species cultivated in Korea is genetically similar to G. lucidum but physiologically closer to G. tsugae than to G. lucidum.

  • PDF