• 제목/요약/키워드: Froude Scaling

검색결과 29건 처리시간 0.027초

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한 (An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section)

  • 이성룡;유홍선;김충익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구 (An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire)

  • 김승렬;장용준;유홍선
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 2008
  • 본 연구에서는 경사각에 다른 임계속도 변화를 파악하기 위하여 축소모형 실험을 수행하였다. Froude 상사를 사용하여 1/20 축소모델 시험을 수행하였고, 화원은 메탄올, 아세톤, 헵탄을 연료로하여 Akinson과 Wu가 사용한 가스버너가 아닌 배연속도에 따라 달라지는 정사각형 풀을 사용하였으며, 터널의 각도는 $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$, $8^{\circ}$에 관하여 실험을 수행하였다. 발열량과 온도는 로드셀과 K-type 열전대를 사용하여 측정하였다. 실험결과 발열량 변화를 고려하지 않은 Atkinson과 Wu의 실험결과 보다 배연속도에 따른 발열량이 변화하는 풀화재를 사용한 경우가 더 큰 기울기 값을 얻었다. 따라서 배연속도는 화원의 연소율 변화에 직접적으로 영향을 미치기 때문에 경사터널화재 발생시 연소율의 변화에 따른 임계속도의 영향을 고려하는 것이 중요하다.

자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations)

  • 황철홍;유병훈;금성민;김정엽;신현준;이창언
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

도로터널 화재시 경사도에 따른 임계풍속산정에 관한 실험적 연구 (Experimental Study on Calculation of Critical Velocity in Accordance with Gradient of a Road Tunnel at Fire)

  • 김종윤;서태범;이동호;임경범;유지오
    • 한국안전학회지
    • /
    • 제21권5호
    • /
    • pp.1-5
    • /
    • 2006
  • This study provides a basic data necessary to design a facility of smoke management after calculating the critical velocity of the gradient scale model tunnel and reviewing its adequacy to establish an optimum disaster prevention system for a road tunnel at fire. The experiment is carried out by using Froude scaling to a scale model which is about 1/29 as big as the real tunnel, and its critical velocity calculation is calculated to the 0-2% gradient of the tunnel. The result shows that the higher the gradient is, the stronger the critical velocity, but that it doesn't affect the critical velocity so much when the gradient is less 2%. In addition, this result is studied in comparison with the results done by other researchers to review the adequacy of the critical velocity.

터널내 화재시 PIV를 이용한 연기제어 특성에 관한 연구 (A Study on the Characteristics of Smoke Control using PIV in Tunnel Fires)

  • 고재웅;김종윤;서태범;임경범;이동호
    • 한국안전학회지
    • /
    • 제21권5호
    • /
    • pp.6-11
    • /
    • 2006
  • This study aims to measure a smoke density and velocity by using the PIV method in case a fire occurs in tunnels. By doing so, this will estimate a critical velocity, examine its appropriateness, and present the basic materials necessary for designing a smoke control equipment. For this study, a visualization test was conducted based on the 1/20 miniature of a real tunnel according to the Froude scaling. As a part of basic experiments, a correlation between smoke density and brightness was analyzed here, and a critical velocity was estimated on the condition that a fire breaks out in tunnels. As a result, this study finds that there is a correlation between smoke density and brightness within a range of 100% to 30% transmittance, from which a quantitative smoke density can be obtained. The study also suggests that a critical velocity calculated from the Kennedy formula shows about 10% difference from that estimated in the test.

터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구 (Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel)

  • 김동운;이성혁;유홍선;윤성욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF

터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구 (Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire)

  • 김동운;이성혁;유홍선;윤성욱
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 2009
  • 본 연구는 축소실험을 통하여 터널내 화재발생시 구난역 내 설계된 환기 시스템 성능을 검증 하였다. Froude 수 상사법칙을 적용하여 실제 터널 크기의 1/35로 축소된 모형터널을 사용하였다. 모형터널은 두께가 2mm인 철을 사용하여 총 길이 10m, 높이 0.19m, 폭 0.26m으로 제작되었다. Cross-passage는 사고터널과 구난 터널 사이에 연결되고 Cross-passage 중앙에는 방화문이 설치되어 있다. 실험에는 n-heptane, $4cm{\times}4cm$ 풀화재를 이용하였다. 화원의 발열량은 695.97W이고, 화원 위치는 터널 중앙과 가장 위험한 경우로써 터널 입구지점에 각각 설치하였다. 환기조건은 0.015cms이고 화원과 가장 인접한 곳에서만 배기하도록 하였다. 구난역 배기 성능을 검증하기 위해 온도와 CO농도를 측정하여 연기의 유무를 파악하였다. 본 실험의 결과는 다음과 같다. 첫째, 터널 중앙화원인 경우 환기가 없어도 구난 터널에 연기가 검출되지 않았다. 둘째, 구난역 입구 부근에 화원을 설치한 경우 환기 조건을 주지 않으면 연기가 구난 터널로 침투하지만, 설계된 배기 조건시 연기는 구난터널로 전파하지 않았다.

짧은 터널 내의 연기거동에 관한 연구 (A Study of Smoke Movement in a Short Tunnel)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Kim, Chung-Ik;Hong, Ki-Bae
    • 터널과지하공간
    • /
    • 제12권1호
    • /
    • pp.31-36
    • /
    • 2002
  • 터널화재시 화원의 크기에 따른 연기기동을 파악하기 위하여 모현실험 및 수치해석이 수행되었다. 모형실험의 결과를 실제 터널에 대해 적용하기 위하여 Frode상사법을 이용하였다. 터널공간내의 화재 해석에 대한 수치해석의 타간성을 입증하기 위하여 모형실험과 수치해석에서 얻어진 연층의 온도분포를 비교하였다. 터널내 온도분포를 해석함으로써 배기장치가 없는 짧은 터널에 대하여 연층은 전체 터널 높이의 절반 이하로 하강하지 않는다는 사실을 파악하였다. 또한 실험에서 얻어진 연층선단의 전파속도는 화재 발생부의 1/3 풍에 비례한다는 사실을 파악하였으며 이는 기존의 경험식 및 수치해석결과와도 잘 일치하였다. 따라서 짧은 터널에서 화재시 피난대책을 수립하는데 있어서 연층의 수평전파가 수직전파에 비해 중요한 설계변수임을 본 연구를 통하여 제시하였다.