• Title/Summary/Keyword: Frost/defrost

Search Result 25, Processing Time 0.023 seconds

Experimental Study on Heating Performance of Heat Pump Chiller under Overload, Frost and Defrost Conditions (과부하 및 착.제상 조건에서 히트펌프 칠러의 난방성능에 관한 실험 연구)

  • Kim, Jung-Seok;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Han, Hwa-Taik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the performance characteristics of the heat pump chiller under heating conditions were experimentally investigated. Capacity, input power and COP under overload, frost and defrost conditions were obtained. The experimental data for the heat pump chiller were measured using the air-enthalpy calorimeter and the constant temperature water bath. At overload condition, the heating capacity and COP increase about 25.7% and 19.1%, respectively. The variations of the evaporator, the compressor outlet and the condenser temperature were obtained under frost and defrost conditions. The frost and defrost period of the heat exchanger decreases about 36.0~56.1%.

Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle (자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구)

  • 박원규;배인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

The Experimental Study on Performance Improvement under frost conditions of the Heat Pump with Corrugate Shaped Fin and Two Compressors (저 착상 휜과 두 대 압축기 사이클을 이용한 히트펌프 난방성능 개선에 관한 연구)

  • Hwang Yoon-Jei;Cho Eun-Jun;Chung Baik-Young;Lee Gam-gue
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • This study presents the experimental study on improvement of frost/defrost performance in an heat pump system with newly developed fin and multiple compressors. As multiple compressors system, the variable and single speed compressor combinations has been introduced and compared with single speed 1-compressor system in a view point of improvement of frost/defrost performance. Also, newly developed corrugate shaped fin has been compared with conventional louver shaped fin. The frost/defrost performance is defined and some parameters are compared to discuss the effect of each combination. From this experimental study, it is known that if the variable and single speed compressor combination system equipped with corrugate shaped fin, the system performance has greatly improved not only for heating capacity, but also for frost performance.

The Frost and Defrost Performances of Fin-and-Tube Exchangers with Different Surface Characteristics (표면특성이 다른 두 핀-관 열교환기의 착상 및 제상 성능)

  • 신종민;최봉준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.525-531
    • /
    • 2002
  • The effects of different surface hydrophilicity on frosting and defrosting characteristic were experimentally investigated. Mass of frost and water hold-up was measured. Results showed that no significant difference in the frost mass was found between the two different surfaces while the water hold-up of heat exchanger court be reduced by the enhancement of surface hydrophilicity. Also, the defrosting efficiency m hydrophilic surface was improved by 76%. It was expected that hydrophilic heat exchanger could provide the improvements in both thermal-hydraulic performances and system reliability during frost/defrost operating in refrigeration systems.

Effect of Frost and Defrost on the Operating Characteristics of Refrigeration System (착상과 제상이 냉동장치의 운전특성에 미치는 영향)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study was investigated the effect on operating characteristics of apparatus according to frosting and defrosting to develop of new defrosting equipment. The results showed as following. Frost was almost removed using the defrosting equipment with roll brush type that defrosting is possible under operating condition. Also, the temperature of compressor inlet, evaporator inlet and outlet showed higher value because of heat transfer resistance of cooling pipe frost comparing with defrosting condition. And the compressor work showed 10% lower and COP was presented 24% higher values than defrosting condition. Therefore, defrosting for cooling coil of refrigeration and low temperature storage was effected on operation and performance characteristics of equipment. This highly effects on real refrigeration apparatus which is operated in year-around.

Experimental Study for Development of Air Eject Defrost Equipment (공기분사식 제상장치 개발에 관한 실험적 연구)

  • Han, In-Geun;Kim, Chang-Yeong;Kim, Jae-Dol;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. Therefore, the proper defrosting operation period based on the new defrosting method is very important, and make a comparison between conventional method like electric defrost and new method in compression work, evaporation pressure, evaporation temperature.

Fuzzy Defrost Control of the Multi-Type Heat Pump System (퍼지룰을 이용한 멀티형 히트펌프 시스템의 제상 제어)

  • 한도영;김경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.711-716
    • /
    • 2000
  • A fuzzy defrost control algorithm for the multi-type heat pump system was developed. In the fuzzy defrost control algorithm, the air temperature difference at the outdoor unit and the refrigerant pressure difference at the compressor were used as input variables, and the defrost starting time and the defrost time interval were used as output variables. This fuzzy algorithm was applied to the multi-type heat pump system and tested in the five dynamic environmental chambers. Test results show that the newly developed control algorithm is more effective than the conventional control algorithm in the removal of frost formed at the outdoor unit of the heat pump.

  • PDF

A Study on the Period of Optimum Defrost of Auto Defrost Unit by the Forced Fan Evaporator (강제 송풍 증발기에 의한 자동제상장치의 최적제상시기에 관한 연구)

  • 구남열;이윤경;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.329-335
    • /
    • 2003
  • This study is on a experiment which shows to defrost automatically on the optimum time regardless of defrosting method. The result shows that the more defrost layers increase in fin tubes of evaporation, the less the section of the circulating air reduce. Thickness of the frost formation increases, so a pressure difference of ventilation increase, as a result automatic defrosting system sets the time COP drops suddenly up optimum time. Automatical defrosting system can find out the initial related current of evaporator fan motor and the value of load current in the optimum time. And it sets defrosting time, evaporating temperature, and temperature in refrigerator up system requiring value. Consequence of this experiment is that energy consumption with defrost load gets effect of reduction of eleven percent per 25.4 hours compared with common defrosting.

A Study of the Defrosting Control in the Application of Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 연구)

  • Jeon, ChangDuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • This study attempted to investigate the value of photoelectric sensors in terms of a defrost-control method. Tests were conducted in a calorimeter room under the heating with the defrost-performance test conditions described in KS C 9306. Accordingly, the photoelectric technology is a competitive defrost-control method that can precisely control the operational defrost cycle using the output voltages that are proportional to the frost height. The heating period is gradually reduced because the complex defrost-control method, for which the sensors initiate the defrosting process and the defrosting process is terminated by the time parameter, could not adjust the net defrosting time by itself. Therefore, a complex defrost-control method, for which the photoelectric sensors start the defrosting process and it is terminated by the temperature parameter, is preferred because of the adjustment of the net defrosting time. Regardless of the defrost-control method, the first defrosting cycle is activated earlier than the times that are determined in the second and third cycles and so on, because the first operation cycle can decide the characteristics of the subsequent cycle.

Feasibility Study on the Frost Prevention and Delay by the Method of Alternating the function of Outdoor Coil Rows (실외기 기능 교번을 통한 착상 방지 및 지연에 대한 실증 연구)

  • Jeon, Chang Duk
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • The object of this experimental study is to investigate the effect on frost prevention and delay by the method of alternating the function of outdoor coil rows under the frost conditions ($2^{\circ}C/1^{\circ}C$). The heat pump system with the new method can make frost delay time longer and eliminate frost effectively. It is withstand over 280 minutes without a conventional defrosting method. Maximum COP in case of adopting new method is 13% higher than that in case of reverse cycle defrosting method. Also in case of moving air injection duct faster, the frost delay time is lengthened and its COP is enhanced more.

  • PDF