• Title/Summary/Keyword: Frontier orbitals

Search Result 17, Processing Time 0.023 seconds

Solid-Electrolyte Interphase in the Spinel Cathode Exposed to Carbonate Electrolyte in Li-Ion Battery Application: An ab-initio Study

  • Choe, Dae-Hyeon;Gang, Jun-Hui;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.169-169
    • /
    • 2017
  • Due to key roles for the electrochemical stability and charge capacity the solid-electrolyte interphase (SEI) has been extensively studied in anodes of a Li-ion battery cell. There is, however, few of investigation for cathodes. Using first-principles based calculations we describe atomic-level process of the SEI layer formation at the interface of a carbonate electrolyte and $LiMn_2O_4$ spinel cathode. Furthermore, using beyond the conventional density functional theory (DFT+U) calculations we examine the work function of the cathode and frontier orbitals of the electrolyte. Based on the results we propose that proton transfer at the interface is an essential mechanism initiating the SEI layer formation in the $LiMn_2O_4$. Our results can guide a design concept for stable and high capacity Li-ion battery cell through screening an optimum electrolyte fine-tuned energy band alignment for a given cathode.

  • PDF

Theoretical Studies of Transition Metal Carbene Complexes (Reactivities, Electronic Structures, and Diels-Alder Reaction) (전이금속의 Carbene 착물에 대한 이론적 연구 (반응성, 전자구조, Diels-Alder 반응))

  • Park Seong-Kyu;Kim IIl-Doo;Kim Joon Tae;Kim Sung-Hyun;Choi Chang-Jin;Cheun Young Gu
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.3-15
    • /
    • 1992
  • Electronic structures and reactivities of the chromium, molybdenum, and tungsten carbene complexes, $(CO)_5Cr=CCHCH_2(XCH_3)\;,\;(CO)_5Mo=CCHCH_2(XCH_3)\;, and\;(CO)_5W=CCHCH_2(XCH_3)$, are studied by means of Extended Huckel calculations. The origin of the M=Ccarbene double bond is clarified from the diagram of the orbital correlation with the fragment orbitals. The ${\sigma}$ bond of the M=Ccarbene double bond is formed by the electron transfer interaction from the HOMO of the carbene to the LUMO of the $(CO)_5M$. The ${\pi}$ bond is formed through the back-transfer of electrons from one of the degenerated d${\pi}$ orbitals to the LUMO of the carbene. The polarization of charge of the M=Ccarbene bond is calculated to be M=Ccarbene for Mo, and W carbenes. The chemical and physical properties of these complexes are resulted from an appreciable positive charge on the carbene carbon. The electrophilic reactivity of the carbene carbon is not charge controlled, but is controlled by the frontier orbital, LUMO.

  • PDF

Analysis of Nonclassical Fullerene C24 Regioisomers Encapsulating H2O using Hybrid Density Functional Methods B3LYP and M06-2X

  • Lee, Seol;Lee, Ji Young;Lee, Kee Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.899-904
    • /
    • 2014
  • The atomic structures and electronic properties of six classical and nonclassical $H_2O$@$C_{24}$ fullerene regioisomers are systematically studied using the hybrid density functional B3LYP method and M06-2X method with empirical dispersion in conjunction with the 6-31G(d,p) basis sets. The charge transfer, frontier orbitals, dipole moment, energy gap between the HOMO and LUMO, and volume change of the $C_{24}$ cage are analyzed upon encapsulation of a $H_2O$ molecule in each $C_{24}$ regioisomer. All encapsulation processes are endothermic and the relative stabilities of six $C_{24}$ fullerene regioisomers change upon encapsulation of $H_2O$.

First-principles Study on the Formation of Solid-Electrolyte Interphase on the LiMn2O4 Cathode in Li-Ion Batteries (제일원리 전산모사를 통한 리튬 이온 전지의 LiMn2O4 전극-전해질 계면 반응 분석)

  • Choe, Dae-Hyeon;Gang, Jun-Hui;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.97-97
    • /
    • 2016
  • Development of advanced Li-ion battery cells with high durability is critical for safe operation, especially in applications to electric vehicles and portable electronic devices. Understanding fundamental mechanism on the formation of a solid-electrolyte interphase (SEI) layer, which plays a substantial role in the electrochemical stability of the Li-ion battery, in a cathode was rarely reported unlike in an anode. Using first-principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations we demonstrate atomic-level process on the generation of the SEI layer at the interface of a carbonate-based electrolyte and a spinel $LiMn_2O_4$ cathode. To accomplish the object we calculate the energy band alignment between the work function of the cathode and frontier orbitals of the electrolyte. We figure out that a proton abstraction from the carbonate-based electrolyte is a critical step for the initiation of an SEI layer formation. Our results can provide a design concept for stable Li-ion batteries by optimizing electrolytes to form proper SEI layers.

  • PDF

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Cheng, Wen;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4084-4092
    • /
    • 2012
  • Theoretical calculations based on density functional theory (DFT) were performed to study the substituent effect on the geometric and electronic structures as well as the biological behavior of technetium-99m-labeled diphosphonate complexes. Optimized structures of these complexes are surrounded by six ligands in an octahedral environment with three unpaired 4d electrons ($d^3$ state) and the optimized geometry of $^{99m}Tc$-MDP agrees with experimental data. With the increase of electron-donating substituent or tether between phosphate groups, the energy gap between frontier orbitals increases and the probability of non-radiative deactivation via d-d electron transfer decreases. The charge distribution reflects a significant ligand-to-metal electron donation. Based on the calculated geometric and electronic structures and biologic properties of $^{99m}Tc$-diphosphonate complexes, several structure-activity relationships (SARs) were established. These results may be instructive for the design and synthesis of novel $^{99m}Tc$-diphosphonate bone imaging agent and other $^{99m}Tc$-based radiopharmaceuticals.