• 제목/요약/키워드: Frontal Crash Analysis

검색결과 62건 처리시간 0.024초

시뮬레이션 기법을 이용한 차량내 전동휠체어 탑승자의 전방 충돌시 안전에 관한 연구 (The Safety Assessment of Wheelchair Occupants in Road Passenger Vehicles with the Frontal Crash: a Computer Simulation)

  • 이영신;이기두;임현균
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1518-1526
    • /
    • 2005
  • With increasing need of transportation services for people with disabilities and the aged, wheelchairs are used as their assistive devices to participate in daily and recreational activities and as seats of motor vehicle. However, as wheelchairs are primarily designed fer mobility assistive devices, not for vehicle seats, wheelchair users may experience serious injury when they meet car crashes. To date, neither engineering guidance for a wheelchair mounting system on the vehicle floor nor safety assessment analysis by a car crash has been studied for the domestic users. In this paper, in accordance with the ANSVRESNA WC-19, a fixed vehicle mounted wheelchair occupant restraint system (FWORS), wheelchair integrated restraint system (WIRS), and wheelchair integrated x-bend restraint system (WIXRS) subjected to frontal impact (20 g, 48 U) were analyzed using compute. simulations for domestic users. We present surrogate wheelchair occupant safety by head injury criteria (HIC), motion criteria (MC), and combined injury criteria (CIC).

SUV 차량의 전면 구조 형상에 따른 충돌 속도와 보행자 전도 거리의 상관관계에 관한 연구 (A Study on the Relationship between Impact Speed and Throw Distance of Pedestrian by the difference of the frontal shape of SUV vehicles)

  • 강대민;안승모
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.105-111
    • /
    • 2007
  • The type of pedestrian accident can be characterized by vehicular frontal shape and the height of pedestrian. The trajectory of pedestrian after collision by passenger car is different from that by bus due to vehicular frontal shape. The frontal shape of SUV vehicles is dissimilar to passenger car and bus. So, the trajectory and throw distance of pedestrian by SUV vehicles is not the same of passenger car and bus. In this paper, a series of pedestrian kinetic simulation were conducted to inspect the difference in throw distance between SUV vehicle and passenger car and bus by PC-CRASH that is the program for kinetic analysis of articulated body. From the results, if the height of pedestrian is taller than 1.70m, there is no difference in throw distance between SUV vehicle and passenger car, but if the height of pedestrian is about 1.55m throw distance of SUV vehicle is about 4m longer than that of passenger car at each impact speed. The throw distance of pedestrian by Bus is shorter than that of passenger car and SUV at each impact speed.

  • PDF

버스 실사고 데이터 구축을 통한 대표 버스충돌유형 분석 연구 (A Study on the Analysis of Representative Bus Crash Types through Establishment of Bus In-depth Accident Data)

  • 김형준;장정아;이인식;이용주;오세창
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.39-47
    • /
    • 2020
  • In this study, crash situations of representative bus crash types were elicited by analyzing a total of 1,416 bus repair record which were collected in 2018~2019. K-means clustering was used as a methodology for this study. Bus repair record contain the information of repair term, type of bus operation, responsibility of accident, weather condition, road surface condition, type of accident, other party, type of road and type of location for each data. Also, by checking collision parts of each bus repair record, each record was classified by types of collision regions. From this, 760 record are classified to frontal type, 363 record are classified to middle-frontal type, 374 record are classified to middle-rear type and 331 record are classified to rear type. As mentioned, k-means clustering was performed on each type of collision parts. As a result, this study analyzed the severity of bus crash based on actual bus accident data which are based on bus repair record not the crash data from the TAAS. Also, this study presented crash situation of representative bus crash types. It is expected that this study can be expanded to analyzing hydrogen bus crash and defining indicators of hydrogen bus safety.

휠체어 탑승 버스의 승객안전도 분석 (Occupant Safety Analysis for Wheelchair Bus Development)

  • 김경진;신재호;용부중;강병도
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

이상화된 자동차 측면부재의 충돌특성 향상에 관한 연구 (Crashworthiness Improvement of Idealized Vehicle's Side Rails)

  • 김흥수;박신희;강신유;한동철
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.189-197
    • /
    • 1996
  • In this study, the crashworthiness analysis was carried out for the hat type section side rails which had an important role of absorbing the impact energy during frontal crash. In case of a tapered hat type section model, numerical simulation models and test models were designed with varing design variables; welding pitch, taper angle, initiator shape, initiator location. The effect of variation of the design variables was investigated by quasi-static and dynamic test and numerical simulation.

  • PDF

고속전철용 충격흡수장치의 설계 (Design of Impact Energy Absorber for High Speed railway Vehicles)

  • 허승진;이종현;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.377-384
    • /
    • 1998
  • The crushable front part of the conventional TGV is composed of 3 energy absorption zones; retractable coupler, protective headstock and honeycomb structure. This frontal part must absorb about 80% of the energy that should be done in a cra shworthy design. The conventional TGV can absorb 2MJ impact energy by the frontal end, but 5MJ is the design target for energy absorption in the next generation TGV. To accomplish this design goal, a new concept of design is necessary for energy absorbing components. In this paper, the design concept of the tube expansion energy absorber will be proposed and analyzed. The crash analysis of the energy absorber are performed by comparing the value of the theoretical equation wi th the simulation calculated from the commercial nonlinear FE-Code ‘PAM-CRASH’ S/W.

  • PDF

스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석 (Simulation Analysis on the Impact of Racing Car with Space Frame)

  • 조재웅;방승옥;김기선
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2341-2348
    • /
    • 2010
  • 본 논문에서는 충돌하중 하에서 스페이스 프레임을 사용하는 경주용 차량의 프레임 변형 및 응력을 분석한다. 충돌 시 변형을 최소한으로 줄이고, 취약부분을 파악하여 운전자의 안전을 확보한다. 탄소강의 물성치를 바탕으로 트러스 구조로 설계된 차량 프레임의 유한요소모델을 만들고, ANSYS 프로그램을 이용하여 정면충돌 시 속도 변화에 따른 충격량 증가가 프레임에 미치는 영향을 분석한다. 또한 정면, 측면, 후면 방향에 충돌하중을 적용하여 프레임의\ 변형을 해석한다. 정면 및 후면충돌에서는 운전석에 가해지는 영향이 적지만, 측면충돌 시 충격에 의한 변형이 운전석까지 진행된다. 이러한 변형에 대한 취약부분의 보강을 통하여 프레임의 안전성 설계를 증진시키고 시뮬레이션 해석의 결과를 실제 프레임 제작에 활용한다.

ATB 프로그램에서 삼점식 좌석 벨트 모델의 구현 (Implementation of 3-point Seat Belt Model into ATB Program)

  • 전규남;손권;최경현
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.145-154
    • /
    • 2003
  • Occupant simulation models have been used to study trends or specific design changes in several typical crash situations. The ATB, Articulated Total Body, was developed and used to predict gross human body responses to vehicle crashes and pilot ejections. Since the ATB source code is open to public, the user can add their own defined modules and functions. The introduction of seat belts into cars significantly decreased the injury risk of passengers in frontal impacts. In this paper, a new seat belt model was developed and implemented into the ATB. For this purpose, a subroutine of the new seat belt was constructed. A force-deflection function was added to replace an existing function to consider energy absorption. The function includes hysteresis effects of the experiment data of the loading and unloading parts of the seat belt load-extension curve. Moreover, this belt model considers a slip between ellipsoid and belt segments. This paper attempted to validate the ATB program which includes the subroutine of new belt models comparing with the real car frontal crash experiments and MADYMO frontal models. The analysis focusses on the human movement and body accelerations.

알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석 (Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam)

  • 방승옥;김세환;조재웅
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1552-1558
    • /
    • 2011
  • 본 논문에서는 알루미늄 폼을 사용한 자동차 범퍼 빔을 설계하고 충돌해석을 수행하였다. 해석모델은 B형 단면 구조를 갖는 실제 크기의 범퍼 빔이다. 저속 정면충돌 시 알루미늄 범퍼 빔의 변형량 및 내부 에너지 거동을 예측할 수 있는 ANSYS AUTODYN을 이용하였다. 7075-T6 알루미늄 합금을 사용하여 철강 재질의 빔보다 55 %의 중량 감소를 얻을 수 있었으며 알루미늄 폼을 사용한 범퍼 빔의 변형량은 철강 빔과 비슷하지만 충돌에너지의 감소가 더 큰 것을 확인할 수 있었다. 또한, 알루미늄 폼의 완충보다는 50 % 충진 시 충돌에너지 흡수가 더 좋았다.