• 제목/요약/키워드: Frobenius extension

검색결과 11건 처리시간 0.019초

Efficient Exponentiation in Extensions of Finite Fields without Fast Frobenius Mappings

  • Nogami, Yasuyuki;Kato, Hidehiro;Nekado, Kenta;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.818-825
    • /
    • 2008
  • This paper proposes an exponentiation method with Frobenius mappings. The main target is an exponentiation in an extension field. This idea can be applied for scalar multiplication of a rational point of an elliptic curve defined over an extension field. The proposed method is closely related to so-called interleaving exponentiation. Unlike interleaving exponentiation methods, it can carry out several exponentiations of the same base at once. This happens in some pairing-based applications. The efficiency of using Frobenius mappings for exponentiation in an extension field was well demonstrated by Avanzi and Mihailescu. Their exponentiation method efficiently decreases the number of multiplications by inversely using many Frobenius mappings. Compared to their method, although the number of multiplications needed for the proposed method increases about 20%, the number of Frobenius mappings becomes small. The proposed method is efficient for cases in which Frobenius mapping cannot be carried out quickly.

  • PDF

A REMARK ON THE NUMBER OF FROBENIUS CLASSES GENERATING THE GALOIS GROUP OF THE MAXIMAL UNRAMIFIED EXTENSION

  • Jin, Seokho;Kim, Kwang-Seob
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.213-218
    • /
    • 2020
  • Assume that K is a number field and Kur is the maximal unramified extension of it. When Gal(Kur/K) is an infinite group. It is known that Gal(Kur/K) is generated by finitely many Frobenius classes of Gal(Kur/K) by Y. Ihara. In this paper, we will give the explicit number of Frobenius classes which generate whole group Gal(Kur/K).

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

FROBENIUS MAP ON THE EXTENSIONS OF T-MODULES

  • Woo, Sung-Sik
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.743-749
    • /
    • 1998
  • On the group of all extensions of elliptic modules by the Carlitz module we define Frobenius map and by using a concrete description of the extension group we give an explicit description of the Frobenius map.

  • PDF

GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS

  • Kong, Fangdi;Wu, Dejun
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1567-1579
    • /
    • 2020
  • Let R ⊂ S be a Frobenius extension of rings and M a left S-module and let 𝓧 be a class of left R-modules and 𝒚 a class of left S-modules. Under some conditions it is proven that M is a 𝒚-Gorenstein left S-module if and only if M is an 𝓧-Gorenstein left R-module if and only if S ⊗R M and HomR(S, M) are 𝒚-Gorenstein left S-modules. This statement extends a known corresponding result. In addition, the situations of Ding modules, Gorenstein AC modules and projectively coresolved Gorenstein flat modules are considered under Frobenius extensions.

MININJECTIVE RINGS AND QUASI FROBENIUS RINGS

  • Min, Kang Joo
    • 충청수학회지
    • /
    • 제13권2호
    • /
    • pp.9-17
    • /
    • 2001
  • A ring R is called right mininjective if every isomorphsim between simple right ideals is given by left multiplication by an element of R. In this paper we consider that the necessary and sufficient condition for that Trivial extension of R by V, i.e. T(R; V ) is mininjective. We also study the split null extension R and S by V.

  • PDF

최적확장체 위에서 정의되는 타원곡선에서의 고속 상수배 알고리즘 (Fast Scalar Multiplication Algorithm on Elliptic Curve over Optimal Extension Fields)

  • 정병천;이수진;홍성민;윤현수
    • 정보보호학회논문지
    • /
    • 제15권3호
    • /
    • pp.65-76
    • /
    • 2005
  • EC-DSA나 EC-ElGamal과 같은 타원곡선 암호시스템의 성능 향상을 위해서는 타원곡선 상수배 연산을 빠르게 하는 것이 필수적이다. 타원곡선 특유의 Frobenius 사상을 이용한 $base-{\phi}$ 전개 방식은 Koblitz에 의해 처음 제안되었으며, Kobayashi 등은 최적확장체 위에서 정의되는 타원곡선에 적용할 수 있도록 $base-{\phi}$ 전개 방식을 개선하였다. 그러나 Kobayashi 등의 방법은 여전히 개선의 여지가 남아있다. 본 논문에서는 최적확장체에서 정의되는 타원곡선상에서 효율적인 상수배 연산 알고리즘을 제안한다. 제안한 상수배 알고리즘은 Frobenius사상을 이용하여 상수 값을 Horner의 방법으로 $base-{\phi}$ 전개하고, 이 전개된 수식을 최적화된 일괄처리 기법을 적용하여 연산한다. 제안한 알고리즘을 적용할 경우, Kobayashi 등이 제안한 상수배 알고리즘보다 $20\%{\sim}40\%$ 정도의 속도 개선이 있으며, 기존의 이진 방법에 비해 3배 이상 빠른 성능을 보인다.

최적확장체에서 정의되는 타원곡선 상에서 효율적인 스칼라 곱셈 알고리즘 (An Improved Scalar Multiplication on Elliptic Curves over Optimal Extension Fields)

  • 정병천;이재원;홍성민;김환준;김영수;황인호;윤현수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (1)
    • /
    • pp.593-595
    • /
    • 2000
  • 본 논문에서는 최적확장체(Optimal Extension Field; OEF)에서 정의되는 타원곡선 상에서 효율적인 스칼라 곱셈 알고리즘을 제안한다. 이 스칼라 곱셈 알고리즘은 프로비니어스 사상(Frobenius map)을 이용하여 스칼라 값을 Horner의 방법으로 Base-Ф 전개하고, 이 전개된 수식을 일괄처리 기법(batch-processing technique)을 사용하여 연산한다. 이 알고리즘을 적용할 경우, Kobayashi 등이 제안한 스칼라 곱셈 알고리즘보다 40% 정도의 성능향상을 보인다.

  • PDF

COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

  • Han, Chong-Kyu;Tomassini, Giuseppe
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1001-1015
    • /
    • 2010
  • Let M be a $C^{\infty}$ real hypersurface in $\mathbb{C}^{n+1}$, $n\;{\geq}\;1$, locally given as the zero locus of a $C^{\infty}$ real valued function r that is defined on a neighborhood of the reference point $P\;{\in}\;M$. For each k = 1,..., n we present a necessary and sufficient condition for there to exist a complex manifold of dimension k through P that is contained in M, assuming the Levi form has rank n - k at P. The problem is to find an integral manifold of the real 1-form $i{\partial}r$ on M whose tangent bundle is invariant under the complex structure tensor J. We present generalized versions of the Frobenius theorem and make use of them to prove the existence of complex submanifolds.

Cyclic Vector Multiplication Algorithm Based on a Special Class of Gauss Period Normal Basis

  • Kato, Hidehiro;Nogami, Yasuyuki;Yoshida, Tomoki;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.769-778
    • /
    • 2007
  • This paper proposes a multiplication algorithm for $F_{p^m}$, which can be efficiently applied to many pairs of characteristic p and extension degree m except for the case that 8p divides m(p-1). It uses a special class of type- Gauss period normal bases. This algorithm has several advantages: it is easily parallelized; Frobenius mapping is easily carried out since its basis is a normal basis; its calculation cost is clearly given; and it is sufficiently practical and useful when parameters k and m are small.

  • PDF