• Title/Summary/Keyword: Frictional reinforcement

Search Result 32, Processing Time 0.015 seconds

Experimental Study on Vibration Reduction Characteristics of Polymer Concrete (폴리머 콘크리트의 진동저감 특성에 대한 실험적 연구)

  • Kim, Jeong-Jin;Shim, Hak-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.58-65
    • /
    • 2019
  • Polymer concrete is expected to be widely used as a building material because it has a shorter hardening time and excellent compression, tensile, bending, bond strength, frictional resistance and abrasion loss compared to general concrete. The polymer concrete has excellent vibration damping performance and research on the use of various reinforcing materials is being conducted. However, in order to completely replace the general concrete and the general anti-vibration reinforcement, such polymer concrete requires an overall review of vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio were compared with those of general concrete. It was appeared that compression, tensile, bending and bond strengths of polymer concrete by epoxy mixing were significantly higher than those of general concrete. Especially, the tensile strength was more than 4 ~ 6.5 times. Based on the basic physical properties of polymer concrete, the damping ratio, which is a dynamic characteristic according to the epoxy mixing ratio, was derived through analytical models and experiments. As a result, the dynamic stiffness of polymer concrete was 20% higher than that of general concrete and the loss rate was about 3 times higher.

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.