• Title/Summary/Keyword: Frictional properties

Search Result 258, Processing Time 0.02 seconds

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교)

  • 조길수;박미란
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

Sound Characteristics and Mechanical Properties of Taekwondo Uniform Fabrics (태권도 도복 직물의 소리 특성과 역학적 성질)

  • Jin, Eun-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.486-491
    • /
    • 2012
  • This study examined the sound characteristics of Taekwondo uniform fabrics to investigate the relationship between the sound parameters and the mechanical properties of the fabric as well as to provide the conditions to maximize the frictional sound of the uniform. Frictional sounds of 6 fabrics for Taekwondo uniforms were generated by the Simulator for Frictional Sound of Fabrics. The frictional speeds were controlled at low(0.62 m/s), at mid(1.21 m/s) and at high(2.25 m/s) speed, respectively. The frictional sounds were recorded using a Data Recorder and Sound Quality System subsequently, the physical sound properties such as SPL(Sound Pressure Level) and Zwicker's psychoacoustic parameters were calculated. Mechanical properties of specimens were measured by KES-FB. The SPL, Loudness(Z) values increased while Sharpness(Z) value decreased. In the physical sound parameter, specimen E had the highest SPL value at low speed and specimen B at high speed. In case of Zwicker's psychoacoustic parameters, the commercially available Taekwondo uniform fabrics(E, F) showed higher values of Loudness(Z), Sharpness(Z), and Roughness(Z), that indicates they can produce louder, shaper and rougher sounds than other fabrics for Taekwondo uniforms. The decisive factors that affected frictional sounds for Taekwondo uniforms were W(weight) as well as EM(elongation at maximum load) at low speed and WC(compressional energy) at high speed.

Relationship Between Frictional Sounds and Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 역학적 성질 간의 상관성)

  • Yang, Yoon-Jung;Park, Mi-Ran;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.566-571
    • /
    • 2008
  • Frictional sounds of 8 vapor permeable water repellent fabrics by sound generator were recorded and analyzed through FFT fast Fourier transform analysis. The frictional Sounds were quantified by calculating level pressure of total sound(LPT), the level range(${\Delta}L$) and the frequency difference(${\Delta}f$). Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of other kinds of finishing. ${\Delta}L$ values of specimens laminated were highest. Absolute values of ${\Delta}f$ were high in the cire finished and laminated specimens. Values for bending rigidity, shear stiffness and energy required for the compression of coated specimens increased compared with the cire finished and laminated specimens. Laminated specimens had high values of frictional coefficient and low values of surface roughness. Relationship between frictional sounds and mechanical properties analysed by use of correlation coefficients and stepwise regression. LPT showed significant correlation with elongation, tensile energy, geometrical roughness, weight and thickness. ${\Delta}L$ was highly correlated with tensile linearity, frictional coefficient, and ${\Delta}f$ with tensile linearity, weight and thickness. LPT were revealed to be explained by elongation and weight. ${\Delta}L$were predicted by tensile linearity, and ${\Delta}f$ by tensile linearity and thickness.

A Basic Study on Functional Friction Surface of Artificial Joints (내마모성이 향상된 기능성 표면구조를 갖는 인공관절에 관한 기초적인 연구)

  • ;T. Yuhta
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.519-526
    • /
    • 2001
  • At present. about 0.3 million and more THRs (Total Hip Replacement) in a rear are being done worldwide. The increase in mechanical failure with the increase in THR, required more revisions. Revisions compensate mainly the wear of the artificial joint frictional surface and the loosening of the cup and stem. According to recent researches, loosening is mainly due to wear debris UHMWPE (Ultra High Molecular Weight Polyethylene) from frictional surfaces . To overcome the wear problems associated with artificial joint materials , new surface structures with regular Patterns were designed and fabricated The lubrication Properties were examined to evaluate the wear of the frictional surfaces. The surface structure manifested a Pattern of "dents" with a 0.2-1.0 mm of diameter and 0.6-2.0 mm of Pitch. From the friction test of the SUS316L vs UHMWPE using the frictional tester, we found that the lubrication Performance was improved due to of drastically reduced amount of abrasion. There were optimum sizes for the diameter and the pitch of the Pattern. The results demonstrated that the lubrication properties could be improved by Patterning of the frictional surfaces. The surface Patterning was effective in preventing wear of the frictional surfaces, and the life of an artificial joint could be extended with such Patterning.

  • PDF

Frictional Properties of Two-dimensional Materials against Spherical and Flat AFM Tips (구형 및 평면 원자현미경 탐침에 대한 2차원 소재의 마찰 특성)

  • Tran-Khac, Bien-Cuong;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2019
  • Two-dimensional materials such as graphene, h-BN, and $MoS_2$ have attracted increased interest as solid lubricant and protective coating layer for nanoscale devices owing to their superior mechanical properties and low friction characteristics. In this work, the frictional properties of single-layer graphene, h-BN, and $MoS_2$ are experimentally investigated under various normal forces using atomic force microscope (AFM) tips with a spherical and flat end, with the aim to gain a better understanding of frictional behaviors. The nonlinear relationship between friction and normal force friction was clearly observed for single-layer graphene, h-BN, $MoS_2$ specimens slid against the spherical and flat AFM tips. The results also indicate that single-layer graphene, h-BN, $MoS_2$ exhibit low frictional properties (e.g., friction coefficient below 0.1 under 70~100 nN normal force). In particular, graphene is found to be superior to h-BN and $MoS_2$ in terms of frictional properties. However, the friction of single-layer graphene, h-BN, $MoS_2$ against the flat tip is larger than that against the spherical tip, which may be attributed to the relatively large adhesion. Furthermore, it is shown that the fluctuation of friction is more significant for the flat tip than the spherical tip. The resutls of this study may be helpful to elucidate the feasibility of using two-dimensional materials as solid lubricant and protective coating layer for nanoscale devices.

Improvement of Frictional Property of BR/CIIR Composite Rubber for Shoes Outsole (운동화 겉창용 BR/CIIR 고무 복합체의 마찰특성 향상에 대한 연구)

  • Pyo, Kyungduk;Choi, Jungsu;Lee, Jongnyun;Park, Chacheol
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.255-261
    • /
    • 2013
  • This paper introduced a new preparation method of a composite rubber by mixing BR (butadiene rubber) and CIIR (chloro-isobutyl rubber) for the purpose of improving frictional property of BR. Since BR has high abrasion and low frictional properties, its frictional property needs to be enhanced in order to be used as an outsole of a sport shoe. Such enhancement was difficult to achieve by simple blending of CIIR. In here, CIIR was added into BR matrix after CIIR was pre-crosslinked for a time period, and both high frictional and high abrasion resistance properties were achieved. Our experiments showed that the composite rubber blend of 60% of BR and 40% of pre-crosslinked CIIR had desired BR's frictional and abrasion resistance properties for sport shoes.

The Effects of Relative Material Properties on the Friction and Wear Behavior of Pure Metals (순수금속의 재료물성치와 마찰.마멸특성에 대한 연구)

  • 황동환;성인하;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.10-20
    • /
    • 1998
  • In this paper, the effects of material properties on the friction and wear behavior of pure metals are investigated. The sliding material pairs are selected based on their relative compatibility and relative hardness ratio of the specimen. The initial and steady-state friction coefficients are obtained in the experiments and the wear rates are quantitatively investigated. It is shown that the initial friction coefficient is affected by the hardness ratio of sliding materials. Furthermore, in steady state condition, neither hardness ratio nor compatibility has significant influence on the frictional behavior. As for wear, the ductility of the metal affects the wear particle generation process which in turn affects the frictional behavior. The findings of this research suggest that frictional interaction cannot be simply characterized by either compatibility or hardness ratio of the materials undergoing sliding contact.

The Effect of Abrasive Particles on the Frictional Properties of Automotive Brake Friction Materials (자동차용 마찰재의 연마재가 마찰특성에 미치는 영향)

  • Jang, Ho;Lee, Eun-Ju;Cho, Keun-Hyung
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • The frictional properties of automotive brake pads with four different ceramic materials such as magnesia, hematite, alumina, and zircon were investigated. A Krauss type friction tester using gray iron disks was used to examine the friction coefficient, intensity of friction force oscillation, and the tribe-surfaces. Results showed that the friction coefficient increased as the hardness of abrasives increases. Friction oscillation was also increased with hardness of the abrasives. However, the friction materials containing less abrasive particles produced stable friction films on the sliding surface. The transition between two-body and three body abrasion during sliding also played a crucial role in destructing the friction film on the pad surface and in determining various frictional properties.

A Study on the Improvement of Frictional Properties of Nylon Impregnated with Wax and Oil or Graphite (왁스와 오일 또는 흑연의 함침에 의한 나일론의 마찰특성 향상에 관한 연구)

  • 강석춘;정대원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.142-149
    • /
    • 2002
  • The frictional properties of nylon can be improved by the impregnation of lubricants like wax, oil or graphite. The inclusion of these lubricants, on the other hand, decreases the mechanical properties of nylon, such as tensile strength, hardness and impact strength. As an attempt to maximize frictional properties, while minimizing a decrease in the mechanical properties, various kinds of nylon containing 3 wt% wax and varying contents of oil or graphite were prepared. It was found that the synergy effects to improve both friction and anti-wear properties is evidenced by impregnating a combination of wax/oil or wax/graphite. The wear rate of a nylon containing 3 wt% of wax and 1.5 wt% of oil turned out to be 1/4 of that of nylon impregnated with 8 wt% wax or 8 wt% oil. The latter showed the lowest wear rate among the nylons prepared with a single lubricant. In addition, the friction coefficient of the developed nylon was found to be very similar to the nylon with 8 wt% wax only.