• Title/Summary/Keyword: Frictional loss

Search Result 104, Processing Time 0.027 seconds

A Study on the Improvement of the Wear Resistance of P-bronze (인청동의 내마모성향상에 대한 연구)

  • Song, Kun;Kwun, Sook-In;Cha, Young-Hyun
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.56-68
    • /
    • 1988
  • The wear resistance of P-bronze which is widely used as worm gear material was investigated. In order 1o study the effect of additional elements on the wear resistance of Pbronze, the applied load and sliding time were selected as variables, and SCM4, were used as against metal. The addition of Fe improve wear resistance, for it precipities hard Fe$_3$ P phase and the work hardening coefficients are lowered due to decreasing solubility of P. When Fe is added in conventional P-bronze, the alloy is rather sliding than forming wear debris by frictional force during wear test. Experimental results indicated that the wear mechanisms for P-bronze are mainly consisted of abrasive wear due to Beilby layer forming mechanism and adhesive wear due to thermally activated wear mechanism. Moreover, the weight loss is decreased in accordance with increasing load and time. However the rate of wear loss is decreased as the sliding time is increased.

Performance Improvement of a Swash Plate Type Piston Pump in the Low-Speed Range by a DLC Coating (DLC 코팅에 의한 사판식 피스톤 펌프의 저속 영역 동력 손실 개선)

  • Hong, Y.S.;Kim, J.H.;Lee, S.L.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2014
  • This paper details application of a DLC(Diamond Like Carbon)-coating to the swash plate and the ball joint of pistons that make sliding contact with the piston shoes of an axial piston pump. This process, aimed to reduce the frictional and leakage power losses of the hydrostatic piston shoe bearings at the low speed range. At lower speeds than 100rpm, the positive effects of the DLC-coating on the power loss reduction of the hydrostatic piston shoe bearings could be confirmed. These effects resulted in little improvement in volumetric efficiency of the test pump, but the mechanical efficiency could be raised by up to 5% at 100rpm; here, the DLC-coated swash plate played a more dominant role than the DLC-coated ball joint.

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Optimization of the Durability Performance of a 17cc Automotive Compressor (17cc급 자동차용 압축기 내구성능 최적화에 관한 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.68-75
    • /
    • 2021
  • The fuel economy is a key issue for the automotive industry due to environmental concerns. In particular, only 5-20% of the energy generated in a car using an internal combustion engine is used as power, and the remaining energy is dissipated due to friction with other parts. The main components in the reciprocating piston type compressors commonly used in general vehicles include shafts, swash plates, pistons, and cylinders, and severe friction loss occurs due to the contact of these components. Generally, the wear contact is the maximum between the shaft and cylinder and between the piston and swash plate. The friction of these parts may cause quality problems and deteriorate the durability. In this study, to reduce the frictional loss, a prototype with additional coating agents was produced. Moreover, an optimized design was generated, and performance, noise, and durability tests were conducted. A more durable product was successfully obtained.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Wear Behavior of C/B filled NR Compounds using a Blade-type Abrader (칼날형 마모시험기를 이용한 C/B충전 NR 배합고무의 마모거동)

  • Youn, J.H.;Kaang, Shinyoung
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Friction and wear behaviors of natural rubber(NR) compounds were investigated using a blade-type abrader. The effects of temperature, normal load, and rotation speed on wear rate were studied, and wear behaviors of deteriorated compounds were also evaluated. As the rotation speed of specimen and the normal load to specimen increased, the wear rate increased. However, as the experimental temperature increased, the frictional coefficient decreased and the wear rate decreased accordingly. It was found from the wear studies that a power-law relation works between the frictional work input and the wear rate. It was observed that the wear rate dramatically increased by the degradation of the rubber specimen. The wear pattern was developed and the bigger ridge space of the pattern was observed usually in the higher normal load applied. In determining the wear rate of rubber compound, the continuous measurements of wear distance using the blade-type abrader could be successfully used instead of intermittent measurements of wear-loss weight.

Performance Improvement of the Hydrostatic Piston Shoe Bearing of an EHA-Piston Pump under Boundary Friction Conditions (EHA 펌프용 피스톤 슈 정압베어링의 경계 마찰 성능 개선)

  • Hong, Y.S.;Kwon, Y.C.;Kim, C.H.;Lee, S.L.;Kim, B.K.;Moon, J.S.;Kim, J.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.30-35
    • /
    • 2014
  • The pumps of electro-hydrostatic actuators operate most frequently in boundary lubrication speed range, as they compensate for the position control errors as a control element. When conventional swash plate type piston pumps are applied to electro-hydrostatic actuators, the frictional power losses as well as the wear rate of sliding components, such as piston shoes can increase drastically under the boundary friction condition. In this paper, the power losses of the piston shoes were investigated which were engendered by a frictional solid-to-solid contact and leakage flow rate of their hydrostatic bearing. In order to reduce them, DLC-coating was applied to the swash plate and the ball joint of pistons along with its effects were demonstrated. In addition, it was also shown that the wear rate of the piston shoes could be markedly reduced using the DLC-coated swash plate.

A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission (승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구)

  • Lee, In-Wook;Han, Sung Gil;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.

Numerical Analysis of the Piston Secondary Dynamics in Reciprocating Compressors

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.350-356
    • /
    • 2003
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the variation in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction tosses.

Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors (왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.