• Title/Summary/Keyword: Frictional angle

Search Result 118, Processing Time 0.021 seconds

A Study on the Wear Behavior of Tetrahedral Amorphous Carbon Coatings Based on Bending Angles of the Filtered Cathodic Vacuum Arc with Different Arc Discharge Currents (자장여과아크소스의 자장필터 꺾임 각도와 아크방전전류에 따라 증착된 ta-C 코팅의 마모 거동 연구)

  • Kim, Won-Seok;Kim, Songkil;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • The structure and properties of tetrahedral amorphous carbon (ta-C) coatings depend on the main process parameters and bending angles of the magnetic field filter used in the filtered cathodic vacuum arc (FCVA). During the process, it is possible to effectively control the plasma flux of carbon ions incident on the substrate by controlling the arc discharge current, thereby influencing the mechanical properties of the coating film. Furthermore, we can control the size and amount of large particles mixed during carbon film formation while conforming with the bending angle of the mechanical filter mounted on the FCVA; therefore, it also influences the mechanical properties. In this study, we consider tribological characteristics for filtered bending angles of 45° and 90° as a function of arc discharge currents of 60 and 100 A, respectively. Experiment results indicate that the frictional behavior of the ta-C coating film is independent of the bending angle of the filter. However, its sliding wear behavior significantly changes according to the bending angle of the FCVA filter, unlike the effect of the discharge current. Further, upon changing the bending angle from 45° to 90°, abrasive wear gets accelerated, thereby changing the size and mixing amount of macro particles inside the coating film.

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

Evaluation of friction of ceramic brackets in various bracket-wire combinations (브라켓 각도 변화에 따른 세라믹 브라켓의 마찰력 측정)

  • Cha, Jung-Yul;Kim, Kyung-Suk;Kim, Dong-Choon;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.125-135
    • /
    • 2006
  • The purpose of this study was to measure and compare the level of frictional resistance generated from three currently used ceramic brackets; 1, Crystaline $V^{(R)}$, Tomy International Inc., Tokyo, Japan; 2, $Clarity^{(R)}$, 3M Unitek, Monrovia, CA, USA; 3, $Inspire^{(R)}$, Ormco, Orange, CA, USA; with composite resin brackets, Spirit, Ormco, Orange, CA, USA; and conventional stainless steel brackets, Kosaka, Tomy International Inc., Tokyo, Japan used as controls. In this experiment, the resistance to sliding was studied as a function of four angulations $(0^{\circ},\;5^{\circ},\;10^{\circ}\;and\;15^{\circ})$ using 2 different orthodontic wire alloys: stainless steel (stainless steel, SDS Ormco, Orange, CA, USA), and beta-titanium (TMA, SDS Ormco, Orange, CA, USA). After mounting the 22 mil brackets to the fixture and $.019{\times}.025$ wires ligated with elastic ligatures, the arch wires were slid through the brackets at 5mm/min in the dry state at $34^{\circ}C$. Silica-insert ceramic brackets generated a significantly lower frictional force than did other ceramic brackets, similar to that of stainless steel brackets. Beta-titanium archwires had higher frictional resistance than did stainless steel, and all the brackets showed higher static and kinetic frictional force as the angulation increased. When the angulation exceeded $5^{\circ}$, the active configuration emerged and frictional force quickly increased by 2.5 to 4.5-fold. The order of frictional force of the different wire-bracket couples transposed as the angle increased. The silica-insert ceramic bracket is a valuable alternative to conventional stainless steel brackets for patients with esthetic demands.

A Study on In-Situ Slope Reinforcement Methods Using Nailed Geotextiles (네일 및 지오텍스타일을 이용한 원위치 사면보강공법에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-152
    • /
    • 1994
  • In the present study, an economic design of Anchored Geosynthetic(AG) System applied mainly to reinforce unstable soil slopes is investigated. For this purpose methods of stability analysis are developed to determine the optimum installation angle, required minimum length and maximum spacing of nails. Anchorage of nails within the soil mass is achieved by frictional resistance to pull out along the effective length of the nails. Cases of infinite slope and finite slope are dealt with individually. Silce methods of stability analysis developed in the present study are limit-equilibrium-based. For the case of finite slope Spencer method which considers interslice force is modified to evalyate the overall stability. In addition, the effects of various design parameters on requried length and spacing of nails corresponding to the optimum orientation of nails are analyzed. Based on the analysis, a simplified equation is given for the optimum nail orientation. Also the importance of optimum nail orientation is illustrated throughout design example, and the appropriateness of judgment criterion are examined.

  • PDF

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF

Heat Transfer and Friction Factors in the Channel with an Inclined Square Diamond Type Perforated Baffle (정 다이아몬드 형 구멍이 있는 배플을 가진 채널에서의 열전달과 마찰계수)

  • Oh, S.K.;Putra, A.B.K.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.26-31
    • /
    • 2008
  • This experimental study investigates the local heat transfer enhancement characteristics and the associated frictional head loss in the rectangular channel with a single inclined baffle. Four different types of the baffle are used. The inclined baffles have the width of 19.8 cm, the square diamond of $2.55cm{\times}2.55cm$, and the inclination angle of 5o, and number of holes of up to 9. Reynolds number is varied between 23,000 and 57,000. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle. It is found that the heat transfer performance of baffle type II(3 hole baffle) has the best values.

  • PDF

Vehicle Shudder Associated with Axial Thrust Force of C.V.Joint For Automobile (자동차용 등속조인트의 AXIAL FORCE와 VEHICLE SHUDDER(I))

  • 오승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.198-208
    • /
    • 1996
  • The plunge joints of C.V. Joint for vehicle tend to produce a cyclic axial disturbance at a frequency of three of six times shaft speed, in which this distrubance caused by internal frictional effect is related to joint angle, rotational speed, torque, and joint size. This principal axial thrust force might make vehicle shuddered when coinciding with vehicle frequency of tranverse direction, and be one of reasons to have driver feel uncomfortable, unesay, while driving vehicle. The paper makes analysis of axial thrust force & vehicle shudder through computer simulation, comparing the result with experimental data, and reviewing the effect by changing of variables such as dimensions and driving conditions.

  • PDF

Comparison of Geotechnical Characteristics of Bottom Ash for Lightweight Fill Material (경량 성토재 활용을 위한 석탄 저회 물성 비교)

  • Kim, Yun-Ki;Lee, Sung-Jin;Shin, Min-Ho;Lee, Seung-Rae;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.679-686
    • /
    • 2010
  • Mechanical characteristics of bottom ash produced in coal-fired power plant are investigated to utilize as light-weight fill materials. Triaxial compression test, water retention test, and unsaturated direct shear test were conducted for weathered soil (WS), reclaimed bottom ash (RBA), and screened bottom ash (BA). RBA had larger frictional angle and lower effective cohesion than those of WS. Water retention charactersitics of RBA and BA existed within distributions of soil-water characteristic curves for domestic weathered soils. Unsaturated shear strength of RBA was similar to that of WS at matric suctions of 50 kPa and 100 kPa. As a conclusion, bottom ash can be used as fill materials to replace the conventional construction materials by.

  • PDF

Characteristics of Roughness of Inclined Surface Fabricated by Various Rapid Prototyping Processes (여러 가지 쾌속조형 방식의 경사면 거칠기 특성)

  • Kim, Gi-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.48-54
    • /
    • 2007
  • Surface of rapid prototype has inevitably stair-stepping error, which is attributed to the continuous building process of 2 dimensional area. In this study, rounded edge model was established to estimate the roughness of inclined surface which has stair-stepping error. To investigate the roughness of rapid prototypes, specimens that have various surface inclinations were manufactured by various types of RP machines. As the surface inclination increased, the roughness of the specimens manufactured by SL, FDM, or LOM process decreased, which coincides with the simulation results. However, surface roughness of 3DP specimen was almost independent of the inclination. Furthermore, as the angle of surface increased, roughness of poly-jet specimen also increased, which is attributed to the frictional behavior between writing head and scanned area.