• Title/Summary/Keyword: Frictional anchor

Search Result 14, Processing Time 0.019 seconds

Behavior Characteristics of Underreamed Ground Anchor through Field Test and Numerical Analysis (현장시험 및 수치해석을 통한 확공지압형 앵커의 거동특성)

  • Kim, Gyuiwoong;Ahn, Kwangkuk;Min, Kyongnam;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.37-44
    • /
    • 2013
  • The superiority of bearing ground anchor system has been recognized for the stability and economical efficiency since 1950s in Japan, Europe and etc. The ground anchor introduced in Korea, however, has the structural problem that the tensile strength comes only from the ground frictional force caused by the expansion of the wedge body and it is impossible to evaluate the bearing resistance because the adhering method of the anchor body to hollow wall is not appropriate. In this study, the underreamed ground anchor system was developed so that the bearing pressure of ground anchor can exert as much as possible. And the in-situ tests were performed to evaluate the pullout behavior characteristics and to verify the decreasing effect of the bonded length. The pullout tests were performed with the non-grouted tension condition and grouted tension condition in order to identify the pull-out resistance of each conditions. In addition, it was compared with the results of friction anchor. Finally, the numerical analysis was fulfilled to verify the bearing effect at the bonded part through the detailed modeling by PLAXIS-2D, which is general finite element method analysis program.

THE EFFECT OF LIGATION METHOD ON THE FRICTIONAL FORGE BETWEEN ORTHODONTIC BRACKET AND ARCHWIRE (결찰양식이 교정용 브라켓과 교정선 사이의 마찰력에 미치는 영향)

  • Shin, Hyun-Jeong;Kwon, Oh-Won;Kim, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.813-823
    • /
    • 1998
  • The frictional force has been considered as an harmful factor in an active unit where tooth movement occurs, but as an advantageous factor in anchor unit that resist tooth movement. That is, efficient tooth movement is planned by using ligation methods that have low levels of bracket-wire frictional force and the anchorage control can be achieved by using ligation methods that have high levels of bracket-wire frictional force that result in binding of the bracket accompanied by little or no tooth movement. The purpose of this study was to evaluate the frictional force generated between bracket and wire in accordance with the methods of ligation, the material of ligation and the passage of time under artificial saliva. Tested were 0.017x0.022 inch stainless steel wires in standard edgewise twin brackets for upper central incisors in a 0.018-inch slot. The wires were ligated into the brackets with elastomeric modules and stainless steel ligatures. Whole tie, half tie, twisting tie and double overlay tie were done with elastomeric modules. With 0.009-inch stainless steel ligature whole tie and half tie were done by needle holder and whole tie by ligature tying plier. With 0.012-inch stainless steel ligature whole ties were done by needle holder. Whole tie groups of elastomeric module were kept in artificial saliva bath at $37^{\circ}C$ for 28 days. The frictional force was recorded by means of an Instron universial testing instrument (4202 INSTRON, Instron Co., U.S.A.) at initial, 7, 14, 21, and 28 days. The results for ligated samples in a simulated oral environment revealed the fellowing : ${\cdot}$In elastomeric module whole tie, 28 days group was significantly greater mean static frictional force than any other group but there were no significant differences among any other group (p>0.05). ${\cdot}$Elastomeric module twisting ties were significantly greater mean static frictional forces than any other ligation method but there were no significant differences between twisting tie and double overlay tie (p>0.05). Twisting tie, double overlay tie, whole tie, half tie showed differences in decreasing order. ${\cdot}$Stainless steel half tie produced lower mean static frictional force than whole tie, ligation by ligature tying plier produced greater mean static frictional force than by needle holder and ligation with 0.012-inch stainless steel ligature produced greater mean static frictional force than with 0.009-inch stainless steel ligature (p<0.05). ${\cdot}$There were no significant differences between the mean static frictional forces of elastomeric whole tie and stainless steel whole tie (p>0.05).

  • PDF

Analysis on the Pattern of Dragging Anchor in Actual Ship (실선 계측에 의한 주묘패턴 분석에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Young;Bae, Byung-Deug;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.505-511
    • /
    • 2009
  • Vessels on anchoring are frequently dragged due to the increased area of wind pressure by enlargement of ship's size and sudden gust of winds in recent years. In the view point of the ship's navigators, the proper measurements corresponding to the dragging of anchor should be taken into account concerned about the time for the occurring of dragging by the external forces such as wind and wave, the pattern and speed of dragging and the possibility of collisions with any other vessels or obstacles. In this paper, it was examined the actual dragging anchor in T.S. HANBADA due to the wind and waves. From this case, it was found the critical external forces by which she was begun to dragged comparing the force by the wind, frictional resistance, drifting force and ship motion moment with the holding power. Also, through the analysis of the dragging pattern, it was known the alteration range of heading angle, swinging width and dragging speed etc.

The Development of the Anchor Dragging Risk Assessment Program (선박 주묘 위험성 판별 프로그램 개발에 관한 연구)

  • Kim, Joo-Sung;Park, Jun-Mo;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.646-653
    • /
    • 2018
  • Marine accidents caused by dragging anchors occur constantly due to enlargement of ships' size and unusual weather conditions. Nevertheless, vessel operators rely on their experience because the calculations of actual holding power and external forces are complex and inconvenient. The purpose of this study was to propose a program for the anchor dragging risk assessment in order to provide crew and VTSO with the information to determine easily the danger of dragging and take appropriate action. The input data in this program were composed of the ship's basic particulars, anchoring condition, and external environment etc. on calculating for the wind pressure, frictional force, drift force, and holding power. Three dragging anchor accidents were applied to the program's data input at the time of the day, then the result was assessed by 'warning', which was verified with a high confidence. As a result, the risk of dragging anchors can be predicted in advance through this program. In further studies, it is necessary to simplify the input data and improve user convenience through automatic input from various equipment.