• Title/Summary/Keyword: Friction-torque

Search Result 378, Processing Time 0.033 seconds

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

Haptic display for deformable thin film (가변형 박판에 대한 촉감 제시)

  • 이승룡;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.125-129
    • /
    • 1996
  • This paper presents the haptic rendering algorithm which gives the feel information to the operator by manipulating a virtual tool with a haptic device in the simulated environment. The movement of a virtual tool grasped by the operator, which is modeled as a square is displayed in the graphic screen of a computer and the virtual environment is modeled as deformable thin film. When the tool contacts with the virtual environment, the operator is forced to feel the contact and the feature of the deformed virtual environment through the torque control of th haptic device. Contact situations are modeled as close as to the reality considering friction, elasticity and multiple contacts. Several experiments are conducted and the effectiveness of the proposed algorithm is confirmed.

  • PDF

Implementation of a dynamic control for a mobile robot (이동 로보트의 동적 제어 구현)

  • 이장명;김용태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.54-64
    • /
    • 1997
  • In this paper, a method of dynamic modeling and a dynamic control of a mobile robot are presented to show the superiority of the dynamic control comparing to the PD control. This dynamic model is derived from the cartesian coordinates using lagrange equations. Based upon the derived dynamic model, we implemented the dynamic control of the mobile robot using the computed torque method. Time varying non-linear friction terms are not incroporated in this dynamic model. Instead, those are considered as disturbances. This uncertainty in dynamic model of mobile robot is compensated by the outer loop controller using PD algorithm. The validity of this model and the control algorithm are confirmed through the experiments, where the dynamic control algorithm demonstrated robust velocity tracking performance against the unmodeled non-linear frictions. The superiority of this algorithm is demonstrated by comparing to classical PD control algorithm.

  • PDF

Stabilization Loop Design Method on Dynamic Platform

  • Kwon, Young-Shin;Kim, Doh-Hyun;Kim, Lee-Han;Hwang, Hong-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.5-156
    • /
    • 2001
  • Stabilized tracking platform in a missile consisting of a flat planar antenna, pitch/yaw gimbals, gear trains, and current controlled DC drive motors for pitch and yaw gimbal must have a capability to track a target as an inertial sensor in the presence of missile body motion such as maneuvering and vibration. Because of this reason, tracking a target from dynamic platform requires a servo architecture that includes a outer tracking loop(position loop) and inner rate loop that stabilizes the line of sight(LOS). This paper presents a gimbaled platform model including nonlinear phenomena due to viscous and Coulomb friction based on experimental data and torque equilibrium equation, the design concept for the inner tacholoop having P controller structure ...

  • PDF

Analysis of High Speed Linear Motor Feed System Characteristics (리니어모터 응용 고속 이송시스템 특성분석에 관한 연구)

  • 유송민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.993-996
    • /
    • 2000
  • A brushless linear motor is suitable for a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive force and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Several system operational characteristics have been observed. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.

  • PDF

Neural network control by learning the inverse dynamics of uncertain robotic systems (불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어)

  • Kim, Sung-Woo;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF

Design of Linear Induction Motor Considering Accelerating Performance for Light Rail Transit (가속 성능을 고려한 경전철용 선형 유도전동기 설계)

  • Cho, Su-Yeon;Kim, Kwang-Soo;Ham, Sang-Hwan;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1409-1415
    • /
    • 2010
  • A linear induction motor have advantages for reducing mechanical frictions and noises because it has thrust force by induced torque instead of friction force between rail and wheels. An it has additional advantage for reducing volume of bogie frame for light rail transit. The small volume causes the cost of construction down. Recently, researches of linear induction motor for thrust force of the light rail transit have been actively studied. For the rail transit, vehicle is running as follow accelerating and constant speed, finally decelerating speed passing local stops between stations. The light rail transit have only these three patterns of operating. Thus, design of that has different design specifications from others. In this paper, the linear induction motor for the light rail transit was designed considering the goal speed, accelerating time, and accelerating distance for approaching the goal speed. The designed motor was proved that it could meet the requirement of accelerating performance by2-dimensional finite element method and mechanical dynamics equation.

  • PDF

Development of High Speed Feed System using Linear Motor (리니어모터 응용 고속이송계 제어기술 개발)

  • 유송민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.973-976
    • /
    • 2000
  • A brushless linear motor is suitalbe fur a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive farce and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.

  • PDF

Effects of Pad Number on the Static Performances of Large Tilting Pad Journal Bearings (패드 수의 변화가 대형 틸팅패드 저어널 베어링의 정특성에 미치는 영향)

  • Kim Sung-Gi;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.330-336
    • /
    • 2004
  • In this paper, thermohydrodynamic characteristics of large tilting pad journal bearings which have $3\~8$ tilting pads were numerically analyzed. The turbulent lubrication equation and the energy equation were solved. The regime of operation of this bearing is laminar, turbulent and transitional. Also viscosity of working fluid was considered as function of only temperature and inlet pressure build-up was considered. Numerical results for a large tilting pad journal bearing showed pressure distribution, temperature distribution, eccentricity ratio, and friction torque. The effects of pad number on the static performances of a large tilting pad journal bearing are discussed.

Development of Rollgap Simulator and Its Application to Draft Schedule Adjustment (롤갭 시뮬레이터의 개발과 패스스케쥴 개선)

  • Ahn Jaehwan;Lee Youngho;Lee In-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.163-172
    • /
    • 2004
  • A fast, accurate model for calculating roll gap variables are critical to the implementation of computer based automation systems for cold rolling mills. Based on the work of Fleck and Johnson, rollgap simulator with non-circular arc model was developed using the influence function. This developed model is capable of predicting values of force, torque and slip which can be applied over the wide range of rolling conditions including cold rolling/DR/temper mill with high execution speed. Friction coefficient was obtained as a function of operation conditions through analyzing measured data. After combination of rollgap simulator with production strategy, draft schedule for No.3 RCM (Reversible Cold Rolling Mill) in Incheon works of Dongbu Steel was developed. This draft schedule will be installed in the setup computer of No.3 RCM replacing old Hitachi model.

  • PDF