• Title/Summary/Keyword: Friction-torque

Search Result 378, Processing Time 0.029 seconds

Friction-Coefficient-Adaptive Slip Control of Torque Converter Bypass Clutch (토크컨버터 바이패스 클러치의 마찰계수 적응 슬립제어)

  • Hahn, Jin-Oh;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.739-744
    • /
    • 2004
  • This paper presents an adaptive approach to control the amount of slip of the torque converter bypass clutch using its estimated friction coefficient. The proposed approach can be readily implemented using the inexpensive speed sensors currently installed in an automobile. A measurement feedback control law to drive the slip error to zero together with an adaptation law to identify the unknown friction coefficient is developed using the Lyapunov control design method. The robustness of the control and adaptation laws to parametric and/or torque uncertainties as well as the convergence of the friction coefficient are investigated. Simulation results verify the viability of the proposed control algorithm in real-world vehicle control applications.

  • PDF

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System (습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계)

  • Cho, Junghee;Han, Juneyeol;Kim, Woo-Jung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.

Torque Characteristics of Cam/Tappet System (엔진 캠/태핏 시스템의 작동토크 측정과 마찰특성)

  • 여창동;김대은;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.66-74
    • /
    • 1998
  • The operating torque and tribological characteristics of a cam/tappet system of an I.C. engine have an important effect on the engine efficiency. More power is lost for higher operation torque which is affected by the friction of a cam/tappet system. In this work experimental investigation of the torque behavior of a cam/tappet system was conducted to get tribological characteristics. Specifically, the torque was measured with respect to oil temperature and camshaft speed. The torque decreased with increasing camshaft speed because of decreasing friction coefficient but was hardly affected by the oil temperature. Also, the torque was the largest near the cam nose region.

  • PDF

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

Analysis of the Dimensionless Torque in Cone Drum False Twisting Mechanism

  • Lee, Choon-Gil;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.161-168
    • /
    • 2003
  • An investigation of the dimensionless torque in the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by the passing yarn without a special driving device. This research is composed of the theoretical analysis of the false twisting mechanism and the experimental analysis at room temperature. The equations have been derived which shows interrelationship of the conical angle of cone drum, the wrapping angle, the drag angle, and the yam helix angle. Theoretical values of dimensionless torque were calculated and were compared with the experimental results. It is shown that, as the conical angle and the projected wrapping angle increased, the dimensionless torque also increased. But the conical angle was reached to ${30.75}^{\circ}C$, the dimensionless torque decreased.

Study of Anti-Fading Phenomena during Automotive Braking (자동차 제동시 나타나는 Anti-Fading현상에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • Two different friction materials (organic and low-metallic pads) for automotive brakes were studied to investigate the anti-fading phenomena during stop. The anti-fading phenomena were pronounced more in the case of using low metallic friction materials than organic friction materials. The main cause of the anti-fading phenomena was the high dependence of friction coefficient on a sliding speed. The anti-fading was prominent when the initial brake temperature was high in the case of low-metallic friction materials due to the strong stick-slip event at high temperature. On the other hand, the anti-fading was not severe in organic friction materials and the effect was reduced at high braking temperature due to the thermal decomposition of organic friction materials. The strong stickslip phenomena of low metallic friction materials at high temperature induced high torque oscillations during drag test. During this experiment two different braking control modes (pressure controlled and torque controlled modes) were compared. The type of the control mode used for brake test significantly affected the friction characteristics.

Effective Friction Coefficient and Improved Formula of Speed Ratio-Torque-Thrust Relationship for Metal Belt CVT (금속벨트 CVT의 유효마찰계수와 개선된 변속비-토크-드러스트 관계식)

  • Lee, B.J.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.226-233
    • /
    • 1998
  • In this paper, an experimental study was performed to investigate the speed ratio-torque-thrust characteristics for metal belt CVT. It is observed from the experimental results that nondimensional secondary thrust force follows with the existing theoretical formula with ${\mu}$=0.09~0.12 depending on the torque and the speed ratio. In order to represent these characteristics, an effective friction coefficient was introduced. Also, the slip characteristics between the belt and the pulley were investigated experimentally and traction coefficients at gross slip were obtained for various speed ratios. Using the traction coefficients and the effective friction coefficients, an improved formula for the secondary thrust force was suggested assuming that thrust force is the summation of the thrust of pseudo inactive arc and the thrust of pseudo active arc. The effective friction coefficient and the improved formula for the speed ratio-torque-thrust relationship suggested in this work can be used to obtain the appropriate secondary thrust.

  • PDF

Analysis of the Characteristics of the Low Friction Pad Type Piston (패드식 피스톤의 특성 해석에 관한 연구)

  • 김청균;김희붕
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.70-78
    • /
    • 1993
  • Using the finite element method, the film pressure, the transverse force and the firction torque which are distributed over the pad surface of low-friction piston skirt are calculated in order to investigate the dynamic characteristics of the piston. The results indicate that the frictional torque for the low-friction piston pad may increase 3% efficiency in comparison th the conventional one.

Estimation of Friction-torque to Improve Accuracy of Estimated Contact-force for a Walking Robot (접촉력 추정 정확도 향상을 위한 보행로봇의 마찰 토크 추정)

  • Lee, Jonghwa;Kang, Hangoo;Lee, Jihong;Jun, Bong-Huan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.398-403
    • /
    • 2015
  • This paper introduces a method to estimate the contact-force of the leg of a walking robot and proposes a solution to a shortcoming of the previous study. This shortcoming was the deteriorating performance when estimating the contact-force whenever the rotation of each joint was reversed. It occurred because the friction-torque of each joint was not considered. In order to solve this problem, a friction-torque model for a robot leg was developed based on repetitive experimentation and used to improve the contact-force estimation performance. We verified the performance of the proposed method experimentally.