• Title/Summary/Keyword: Friction-Factor

Search Result 969, Processing Time 0.025 seconds

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

A Study on Improvement of Gravity model Decay Function of Transporting Demand Forecasting Considering Space Syntax (Space Syntax를 이용한 교통수요예측의 중력모형 저항함수의 개선방안)

  • Jang, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.617-631
    • /
    • 2019
  • In the four-step demand model, a gravity mode is used most commonly at the trip distribution stage. The purpose of this study was to develop a new friction factor that can express the accessibility property as a single friction factor to compensate for the variable limits of the gravity model parameters (travel time, travel cost). To derive a new friction factor, a new friction factor was derived using the space syntax that can quantify the characteristics of the urban space structure, deriving the link-unit integration degree and then using the travel time and travel distance relationship. Calibration of the derived friction factor resulted in a similar level to that of the existing friction factor. As a result of verifying the various indicators, the explanatory power was found to be excellent in the short - and long - distance range. Therefore, it is possible to derive and apply the new friction factor using the integration index, which can complement the accessibility beyond the limit of the existing shortest distance, and it is believed to be more advantageous in future utilization.

An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials (이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

A Study on the Bounding Value of Valve Performance Parameters for Motor Operated Flexible Wedge Gate Valve (모터구동 Flexible Wedge형 게이트밸브의 밸브 성능인자 Bounding Value에 대한 연구)

  • Kim, Dae-Woong;Yoo, Seong-Yeon;Park, Sung-Keun;Lee, Do-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.46-53
    • /
    • 2007
  • Stem friction coefficient and valve factor are very important parameters for the evaluation of valve performance. In this study, the characteristics of stem friction coefficient and valve factor are analyzed, and thor bounding value is determined. The hydraulic testing is performed for many flexible wedge gate valves in the plant and statistical method is applied to the determination of bounding value. According to the results of this study, stem friction coefficient does not change much with differential pressure, and the bounding value of closing stroke is higher than that of opening stroke. The valve factor of valves with high differential pressure is higher than that of valves with medium differential pressure. It means valve factor is more sensitive to the differential pressure than the stem friction coefficient. Valve factor of the closing stroke is higher than that of opening stroke due to piston effect.

Position Control of Ball-Screw Systems with Compensation of Estimated Coulomb Friction (추정된 쿨롱 마찰을 보상한 볼-스크류 시스템의 위치제어)

  • Kim, Han-Me;Choi, Jeong-Ju;Lee, Young-Jin;Kim, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.893-898
    • /
    • 2003
  • Coulomb friction is an important factor for precise position tracking control systems. The control systems with friction causes the steady state error because of being sensitive to the change of system condition and highly nonlinear characteristics. To overcome these problems, we use an estimation scheme of Coulomb friction to experiment for it's compensating. The estimated factor for Coulomb friction is used as a feed-forward compensator to improve the tracking performance of ball-screw systems. The tracking performance was improved by compensating the estimated friction torque in the feed-forward term. And, the sliding mode control which is derived from the Lyapunov stability theorem is applied for robust stability and reducing chattering. The experimental results show that the sliding mode controller with adaptive friction compensator has a good tracking performance compared with the friction uncompensated controller.

  • PDF

Air-side Heat Transfer and Friction Characteristics of Fined-tube Heat Exchangers under Heating Condition (핀-관 열교환기의 난방운전 시 공기측 열전달 및 마찰특성)

  • Kwon, Young Chul;Chang, Keun Sun;Ko, Kuk Won;Kim, Young Jae;Park, Byung Kwon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.476-482
    • /
    • 2006
  • An experimental study has been performed to investigate the characteristics of air-side heat transfer and friction of a fined tube heat exchanger under heating conditions. Air enthalpy calorimeter was used to obtain the performance evaluation and analysis of the fined tube heat exchanger. Eight finned tube heat exchangers with slit fin, louver fin, and plain fin were used. The air-side heat transfer coefficient was calculated by the log-mean-temperature-difference. Air-side heat transfer and friction were presented in terms of j factor and friction factor on Reynolds number. From the experimental result, it was found that the variations of air-side heat transfer and friction of fined tube heat exchanger with the change of the fin configuration, row number, fin pitch, and tube circuit were obtained. j factor and friction factor decreased with Reynolds number increased. The tube circuit affected the air-side heat transfer and friction. In the case of slit and louver fin, j factor of 1st row was higher than that of 2nd row. But, with increasing Re, j factor was reversed. The characteristics of j factor and friction factor of 2nd row heat exchanger were different according to the kind of fins.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

A Numerical Study on Flow Characteristics of a Honeycomb seal (Honeycomb Seal의 유동 특성 해석)

  • Hong, E.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.153-157
    • /
    • 2000
  • Honeycomb seals are used widely in gas turbines due to their good sealing performance and rotor-dynamic stability. Three-Dimensional complex flows in a honeycomb seal were analyzed in the present study. Friction factors were computed to predict the performance of a honeycomb seal based on pressure drop results for various honeycomb cell geometry and Reynolds numbers. Computed results for friction factor are compared to the available experimental data. Unlike in the experiment, where 'Friction-Factor Jump' phenomena are reported for some cases, computed results show no jump phenomena. The friction factors, however, are in good agreement with the experiment in no-jump cases.

  • PDF