• Title/Summary/Keyword: Friction resistance

Search Result 894, Processing Time 0.024 seconds

Friction Behavior of Micro-scale Groove Surface Patterns Under Lubricated Sliding Contact

  • Chae Young-Hun
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2005
  • Surface texturing of tribological applications is an attractive technology of engineered surface. Therefore, reduction of friction is considered to be necessary for improved efficiency of machines. The current study investigated the potential of textured micro-scale grooves on bearing steel flat mated with pin-on-disk. We discuss reducing friction due to the influence of sliding direction at surface pattern. We can indicate lubrication mechanism as a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for the lubrication condition. It was found that the friction coefficient was changed by the surface pattern and sliding direction, even when surface pattern was the same. It was thus verified that micro-scale grooves could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions. The lubrication regime influences the friction coefficient induced by the sliding direction of groove pattern. The friction coefficient depends on a combination of resistance force and hydrodynamic.

Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials (금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성)

  • Kim, JinWoo;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.

Fretting Corrosion Behavior of Tin-plated Electric Connectors with Variation in Temperature (온도변화에 따른 주석 도금한 전기 커넥터의 미동마멸 부식 거동)

  • Oh, Man-Jin;Kang, Se-Hyung;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.146-155
    • /
    • 2014
  • In this study, we conduct fretting corrosion tests on tin-plated brass coupons to investigate the effect of temperature on fretting corrosion for various span amplitudes. We prepare a coupled fretting corrosion specimens using a tin-plated brass coupon with a thickness of $10{\mu}m$. One specimen is a flat coupon and the other specimen is a coupon with a protuberance in 1 mm radius, which is produced using 2 mm diameter steel ball. We conduct fretting corrosion tests at $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ by rubbing the coupled coupons together at the contact between the flat and protuberance coupons. We measure electric resistance of the contact during the fretting corrosion test period. There is increase in resistance with fretting cycles. It is found that rate of increase in electric resistance becomes faster with increase in testing temperature. Magnitude of friction coefficient increases with fretting span amplitudes. And, change in friction coefficient becomes desensitized to the increment in span amplitude. Assuming that failure cycle is the cycle with an electric resistance of $0.01{\Omega}$, we find that failure lifetime ($N_f$) decreases with increase in testing temperature. Furthermore, based on the assumption that the damage rate of the connector is inversely related to the failure cycle, we calculate the activation energy for fretting damage to be 13.6 kJ/mole by using the Arrhenius equation. We propose a method to predict failure cycle at different temperatures for span amplitudes below $30{\mu}m$. Friction coefficients generally increase with increase in span amplitude and decrease in testing temperature.

A Study on Rolling Friction Characteristics of Magneto-Rheological Elastomer under Magnetic Fields (자기장 영향에 따른 자기유변탄성체의 구름 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • Magneto-rheological elastomer (MR elastomer) is a smart material, because it has mechanical properties that change under a magnetic field. An MR elastomer changes its stiffness characteristics when the inner particles (iron particles) align along the direction of a magnetic field. There has been much research to make use of this characteristic to control vibration issues in various mechanical systems, such as for mounting systems in the automotive field, home appliances, etc. Furthermore, the friction and wear properties of MR elastomer have been studied, as these relate to the durability of the material needed to meet engineering requirements. Rolling friction (or rolling resistance) is one of these friction properties, but has not yet been studied in the context of MR elastomers. In this study, an MR elastomer is fabricated in the shape of a hollow cylinder to evaluate the rolling friction characteristic under a magnetic field. The test apparatus is setup and a strain gauge is used to calculate the rolling resistance under test conditions. Permanent magnets are used to supply the magnetic field during tests. The load and rolling speed conditions are also considered for the tests. The test results show that rolling friction characteristic has a different trend under different magnetic field, load, and rolling speed conditions. It is assumed that the stiffness change of an MR elastomer under a magnetic field has an effect on the rolling friction characteristic of the MR elastomer. For the future work, the rolling friction characteristics of MR elastomers will be controlled by adjusting the strength of the magnetic field using electromagnets.

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

Estimation of the Relative Density and Internal Friction Angle for Sand using Cone-tip Resistance of the PCPT (휴대용콘의 선단저항값을 이용한 모래의 상대밀도 및 내부마찰각 추정)

  • Park, Jae-Sung;Son, Young-Hwan;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.137-145
    • /
    • 2012
  • Sand is one of the essential materials used for social infrastructure construction such as embankment, landfill and backfill. It was known that mechanical properties and shear strength of sand are closely related to relative density. Therefore it is very important to determine accurate relative density. In this study, Portable Cone Penetration Tester (PCPT) was used to estimate the relative density and the internal friction angle of sand. PCPT cone-tip resistance ($q_c$) was measured changing the relative density of the two soil samples.Standard sand (JMJ) and Busan sand (BS). Also, a direct shear test was performed to investigate relationship between relative density and internal friction angle. The size and shape of soil particles were confirmed by using Scanning Electron Microscope (SEM). As a result, the log value of $q_c$ was linearly correlated with relative density and internal friction angle. In particular, the internal friction angle of BS sample was greater than that of JMJ, which was due to difference of the shape and mean size of particles. This result shows that it is important to determine the shape and size of particles as well as relative density to define mechanical property of sand. Through this study, it can be more effectively and conveniently to investigate relative density and shear strength of sand by using PCPT in situ.

Pullout Resistance Characteristics of Strip-type Reinforcement based on Extensibility (신장성에 따른 띠형 보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes large scale pullout test results, in order to evaluate extensibility effect of strip-type reinforcement. The same test for ribbed steel strip reinforcement also is conducted to compare the friction resistance reinforcements' evaluation results. The pullout resistance of the ribbed steel strip reinforcement, which has a small cross sectional areas, was better than the friction resistance reinforcements' due to the bearing (passive) resistance. In case of friction resistance reinforcements, the pullout resistance of extensible reinforcement was better than inextensible reinforcement' even though they have a similar cross sectional areas.

Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted (침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석)

  • Lee, Kicheol;Shin, Sehee;Lee, Haklin;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.107-117
    • /
    • 2020
  • Open-ended steel pipe piles have outside frictional force and inside frictional resistance in which blocked soil acts on the inside of the steel pipe during installation. It is expected that the ultimate load will change depending on the inside and outside resistance. And, if the ground on which the piles were constructed is clay soil, it is predicted that it will have effect on the negative skin friction caused by the ground settlement. Therefore, in this study, the behavior according to the inside and outside resistance characteristics of steel pipe piles was analyzed numerically, and the frictional force distribution, axial load and settlements before and after the occurrence of ground settlement were calculated. As a result of the analysis, the inside frictional resistance had less influence than the outside frictional resistance. However, inside frictional resistance is considered to be one of the important factors considering the effect on the overall pile behavior, and both resistance factors need to be considered in the design process.

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.

Effect of Different Solid Lubricants in the Automotive Friction Material on Friction Characteristics (자동차용 마찰재에 사용되는 고체 윤활제에 따른 제동특성에 관한 연구)

  • Lee, Jung-Joo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.328-334
    • /
    • 1998
  • In this work, friction materials with three different formulations containing different amounts of the solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained graphite 10 vol. %, graphite 7 vol. % + MoS$_2$ 3 vol.%, and graphite 7 vol. % + $Sb_2S_3$ 3 vol. %, respectively, with the same amount of other ingredients. Results of this work showed that each formulation with different lubricants had unique advantages and disadvantages. The friction materials containing graphite 7 vol. % + MoS$_2$ 3 vol. % and graphite 7 % + $Sb_2S_3$ 3 vol. % showed better resistance to fading and improved friction stability compare to the friction materials containing graphite only as a lubricant. However, the friction materials with two lubricants (graphite + MoS$_2$ or $Sb_2S_3$) showed disadvantages on stick-slip phenomena, amplitude of torque, and rotor wear.

  • PDF