• Title/Summary/Keyword: Friction pressure

Search Result 1,476, Processing Time 0.023 seconds

Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites (CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구)

  • Cho, Min-Haeng;Bahadur, Shyam;Park, Hye-Young;Kim, Yoon-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

Developing an Instrument Ensuring Reliable Contact Conditions for Contact-Type Area-varying Capacitive Displacement Sensors (접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발)

  • Kim, Sung-Joo;Lee, Won-Goo;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1147-1156
    • /
    • 2011
  • A contact-type area-varying capacitive displacement sensor, or CLECDiS, can measure displacements over millimeter ranges with nanometer resolution. However, a small changes in the contact condition due to the surface profile or friction, which are inherent characteristics of contact-type sensors, lead to significant distortion of the output signal. Therefore, ensuring reliable contact conditions during CLECDiS measurements is the most important area to be improved in their actual use. Herein, in order to design an instrument for ensuring reliable contact conditions, the contact condition is analyzed by characterizing the signal distortion, observing the pressure distribution between the contacting surfaces, and measuring the motional errors of the sensor using a laser Doppler vibrometer (LDV). The manufactured instrument enables a CLECDiS to be used in an ultraprecise positioning system with improved reliability.

A Study on the Effects of Cross-sectional Dimension Change of Brake Pad Specimen on the Uncertainty of the Compressive Strength (제동 패드의 압축강도시편의 단면치수변화가 압축강도 불확도에 미치는 영향 분석)

  • Park, Soo Hong;Park, Jin Kyu;Kim, Si Wan;Park, Chan Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.223-227
    • /
    • 2014
  • The brake pad is one of the basic brake elements of a railway vehicle. It accomplishes braking action by friction between a pad and a brake disc. Because the brake pad must endure specified high pressure, the compressive strength is managed as the main performance factor. The standards for measuring the compressive strength of brake pads are KRS, KRCS, and KRT. These standards specify the size of the test piece for measuring compressive strength as $20mm{\times}10mm{\times}15mm$ ($W{\times}D{\times}H$). To reduce the uncertainty of the compressive strength, factors of uncertainty were analyzed. The results show that changing the dimensions of the cross section was useful to reduce the uncertainty. The uncertainty due to the new cross-sectional dimension shows the effectiveness of reducing uncertainty.

Numerical Study on Flow and Heat Transfer Enhancement in a Cooling Passage with Protrusion-In-Dimples (돌출부를 포함한 딤플 표면을 가진 냉각 유로에서의 유동과 열전달 성능 향상에 관한 수치적 연구)

  • Kim, Jeong-Eun;Ha, Man-Yeong;Yoon, Hyun-Sik;Doo, Jeong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.805-814
    • /
    • 2011
  • In the present study, the detailed flow structure and heat transfer characteristics in the newly-designed heat transfer surface geometry were investigated. The surface geometry proposed in the present study is a traditional dimple structure combining with a protrusion inside the dimple, which is named a protrusion-in-dimple in this study. The basic idea underlying the present surface geometry is to enhance the flow mixing and the corresponding heat transfer in the flow re-circulating region generated by a conventional dimple cavity. The present study was performed by the direct numerical simulation at a Reynolds number of 2800 based on mean velocity and channel height and Prandtl number of 0.71. Three different protrusion heights for protrusion-in-dimples were considered as the main design parameter of the present study. The calculated pressure drop and heat transfer capacity were assessed in terms of the Fanning friction factor and Colburn j factor. The overall performances estimated in terms of the volume and area goodness factor for protrusion-in-dimple cases were higher than the conventional dimple case.

The Effects of Permeability Anisotropy on the Active Earth Pressure In Compacted Sand Backfill (뒷채움 모래의 다짐에 의한 투수이방성이 주동토압에 미치는 영향)

  • Jeong, Seong-Gyo;Sin, Jong-Bo;Jeon, Yong-Baek
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 1986
  • To investigate the seepage effect on the compacted backfill of retaining walls, an expriment and an analytical study were carried out First, the expriment was performed with a two-way permeameter newly designed for the do- termination on the degree of permeability anisotropy of compacted soils. As a result, e-log(kz/ky) plot showed a linear relationship, where kz and ky were permeability coefficients for the normal and the parallel directions to the compaction. The degree of permeability anisotropy, kz/ky was 2 to 4 at Dr>90% for sands, regardless of the methods of compaction. The kz/ky of the fine sand was greater than that of the coarse sand. Second, the exprimental results were applied to the extention of Gray's theory for the investigation of the active thrust affected by the seepage of permeability anisotropy. The active thrust was decreased with the increase in the degree of permeability anisotropy, and it It.as a little effect on wall friction.

  • PDF

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working (가스 스프링 Elevation 동작에 적합한 피스톤 로드 움직임의 관형 오리피스 단면에 관한 연구)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7745-7753
    • /
    • 2015
  • Gas springs of the television is to control the piston speed when operating under along stroke(200~300 mm, television elevation)is possible. User by this principle is capable of elevation adjustment. First carried out a flow analysis of the piston. A piston speed adjustment technique for precise pipe type cross-section was examined. The piston structure for flow rate control and elevation action is proposed. This study is the development of a gas spring of more than 50 inch television with a large television stand. Hollow piston rod for optimal control(the outer diameter 19.9 mm, the inner diameter 13.9 mm) was injected into the nitrogen gas(0.3 mm/s) in. As a result, the flow rate the pressure drop of the piston rod as the increase was increased without any change of the external force. As a result, control of the displacement via the gas spring is possible.

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Non-Symmetric Slit Fins Under Wet Condition (비대칭형 슬릿 핀이 적용된 핀-관 열교환기의 습표면 성능)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3698-3707
    • /
    • 2015
  • In this study, wet surface heat transfer and friction characteristics of non-symmetric slit-finned heat exchangers are experimentally investigated. Louver-finned heat exchangers are also tested for comparison purpose. The effect of fin pitch on j and f factor is negligible. Louver fin samples yield higher j and f factors than slit fin samples. For one row, j and f factors of louver fin are 27% and 31% higher than those of slit fin. For two row, j and f factors of louver fin are 15% and 30% higher. Both j and f factor decrease as the number of tube row increases. For one row, average j/f ratios of slit fin samples are 3.4% larger than those of louver fin samples. For two row, average j/f ratios of slit fin samples are 11.5% larger. A new correlation was developed using the present data.

Theoretical Analysis and Experimental Evaluation of Small Cyclone Separator to Remove Fine Particulate Matter (미립 물질 제거를 위한 소형 사이클론 분리기의 이론적 연구 및 실험적 검증)

  • Ko, Han Gyul;Kim, Hong Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut-off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut-off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of $0.5-30{\mu}m$. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.