• Title/Summary/Keyword: Friction heating time

Search Result 53, Processing Time 0.019 seconds

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

Studies on the Utilization of Sweet Potatoes for Takju Brewing (탁주양조원료(濁酒釀造原料)로서 고구마의 이용(利用)에 관(關)한 연구(硏究))

  • Kim, Chan-Jo;Choi, Woo-Young;Oh, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.213-219
    • /
    • 1972
  • In order to utilize sweet potatoes for the material of Takju, brewing experiments with raw sweet potatoes, sweet potato chips powder and its koji were conducted; and various tests were carried out on effect of the treatments of acid, alkali, polyphenol oxidase inhibitor, oxidizing and reducing agents upon the prevention against coloring of sweet potato chips by steaming, and on peeling effect of sweet potatoes by the alkali and heat treatments. The results obtained were as follows. 1) In the case of brewing with raw sweet potatose, each plot showed low acid and ethanol content, and its finished Takju had an undersirable color and odor. The plots which were mashed after peeling showed higher ethanol contents than the plots mashed without peeling. 2) In the case of brewing with sweet potato chips powder, each plot contained considerably more amount of ethanol than the plots brewed with raw sweet potatoes, white it contained less amount of acid. The ethanol contents of the plots using wheat bran koji were $10.5{\sim}11.4$ per cent 4 days after mashing, and were higher than those of the plots using malts powder. Their finished Takju was inferior in quality because of the lack of acid and being darkened gradually in process of time. 3) The kojies which were made of sweet potato chips powder with Neurospora sitophila or Aspergillus oryzae had good appearance, but the Takju mashes brewed with these contained remarkably less amount of ethanol. 4) Effect of the treatments of acid, alkali, polyphenol oxidase inhibitor and organic solvents such as ether and ethanol upon the prevention against coloring of sweet potato chips was not recognized. Alum and burnt alum were effective a little on the decolorization, and among the oxidizing and reducing agents tested, potassium permanganate was most effective. 5) Darkening of sweet potato chips powder in course of heating after mixing with water was not affected by pectin and amino acids, but by tannin. 6) Sweet potatoes were not peeled easily by friction after soaking in the boiling solution of 3 per cent alkali for 6 minutes and peeled in boiling water for 12 minutes. From the viewpoint of the results above mentioned, it seems to be necessary to study further on the isolation of microorganisms which are able to decompose the coloring substances and yeasts which are adequate for the fermentation of sweet potatoes in order to utilize sweet potatoes for Takju brewing, because brewing with raw sweet potatoes, sweet potato chips powder and its koji was unsuccessful, and effect of the various treatments on the decolorization of sweet potatoes was not recognized.

  • PDF