• Title/Summary/Keyword: Friction heating time

Search Result 53, Processing Time 0.03 seconds

Optimization of Friction Welding for Motor Vehicle Safety Belts: Part 1-Mechanical Properties and Microstructure (수송차량 안전벨트용 모터축재의 마찰용접 최적화(1) - 기계적 특성 및 조직)

  • Kong, Yu-Sik;Ahn, Seok-Hwn
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.64-69
    • /
    • 2012
  • Dissimilar friction welds were produced using 15-mm diameter solid bars of chrome molybdenum steel (KS SCM440) and carbon steel (KS SM20C) to investigate their mechanical properties. The main friction welding parameters were selected to ensure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond area and HAZ, and macro-structure investigations. The specimens were tested as-welded and post-weld heat treated (PWHT). The tensile strength of the friction welded steel bars was increased to 100% of the SM20C base metal under the condition of a heating time of more than four seconds. Optimal welding conditions were n = 2,000 (rpm), HP = 60 (MPa), UP = 100 (MPa), HT = 5 (s),and UT = 5 (s), when the total upset length was 7.8 (mm). The hardness distribution peak of the friction welded joints could be eliminated using PWHT. The two different kinds of materials were strongly mixed to show a well-combined structure of macro-particles, with no molten material, particle growth, or defects.

On Mechanical Properties of Similar Friction Welded in Alloy718 (Alloy718 동종 마찰용접재의 기계적 특성에 관하여)

  • Kong, Yu-Sik;Kim, Seon-Jin;Kwon, Sang-Woo;Kim, Jeoung-Han;Park, Nho-Kwang
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.205-208
    • /
    • 2006
  • Similar friction welding were produced using 15 mm diameter solid bar in Ni-base superalloy(alloy718) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, AE total counts and ultrasonic attenuation coefficient. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded joints was increased up to 90% of the alloy718 base metal under the condition of all heating time. Optimal welding conditions were n=2,000 (rpm), $P_1=200$ (MFa), $P_2=200$ (MFa), $t_1=8$ (s), $t_2=5$ (s) when the total upset length is 4.4(mm). The weld interface of similar friction welded steel bars was mixed strongly.

  • PDF

On Dissimilar Friction Welded Joints(STS316L/IN X-750) of Turning Vane Bolt (Turning Vane Bolt의 이종재(STS316L/IN X-750) 마찰용접에 관하여)

  • SHIN KI-SUK;KONG YU-SIK;KIM SEON-JIN;RYOO IN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.331-336
    • /
    • 2004
  • Dissimilar friction welding were produced using 10mm and 11mm diameter solid bar in Inconel ally(IN X-750) to Stainless steel(STS316L) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Virkers hardness surveys of the bond of area and HAZ and macro-structure investigations. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded steel bars was increased up to $95\%$ of the STS316L base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=220(MPa),\;P_2=260(MPa),\;t_1=4(s),\;t_2=4(s)$ when the total upset length is 7(mm).

  • PDF

On Mechanical Properties of Dissimilar Friction Welded Materials (이종 마찰용접재의 기계적특성에 관하여)

  • Kwon, Sang-Woo;Jung, Won-Taek;Choi, Dae-Gum;Kong, Yu-Sik;Kim, Yong-Sik;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.158-162
    • /
    • 2003
  • A study on friction welding of chrome molybedenum steel(SCM440) to carbon steel(S45C) is examined experimentally through tensile test, hardness test. So, this paper deals with optimizing the welding conditions and analyzing various mechanical properties about friction welds of SCM440 to S45C steel. The tensile strength of the friction welded joint was increased up to 100% of the S45C base matal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_{1}=60(MPa)$, $P_{2}=100(MPa)$, $t_{1}=4(s)$, $t_{2}=5(s)$ when the total upset length is 5.7(mm).

  • PDF

Optimization of Friction Welded Joint Conditions in Alloy718 and the Nondestructive Evaluation (Alloy718 마찰접합조건의 최적화와 비파괴 평가)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • Friction welding was performed to investigate mechanical properties for Ni-base superalloy with 15 mm diameter solid bar. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bond of area and heat affected zone. And then, the nondestructive technique to evaluate the weld quality was carried out by acoustic emission(AE) and ultrasonic attenuation coefficient. The tensile strength of the friction welded joint was shown up to 90 % of the Alloy718 base metal under the condition of the heating time over 5 sec. The optimal welding conditions were n=2,000 rpm, $P_1=200$ MPa, $P_2=200$ MPa, $t_1=8$ sec and $t_2=5$ sec when the total upset length was 4.4 mm.

Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process

  • Kong, Biao;Wang, Enyuan;Li, Zenghua
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1125-1133
    • /
    • 2018
  • Real-time characterization of the rock thermal deformation and fracture process provides guidance for detecting and evaluating thermal stability of rocks. In this paper, time -frequency characteristics of acoustic emission (AE) and electromagnetic radiation (EMR) signals were studied by conducting experiments during rock continuous heating. The coupling correlation between AE and EMR during rock thermal deformation and failure was analyzed, and the microcosmic mechanism of AE and EMR was theoretically analyzed. During rock continuous heating process, rocks simultaneously produce significant AE and EMR signals. These AE and EMR signals are, however, not completely synchronized, with the AE signals showing obvious fluctuation and the EMR signals increasing gradually. The sliding friction between the cracks is the main mechanism of EMR during the rock thermal deformation and fracture, and the AE is produced while the thermal cracks expanding. Both the EMR and AE monitoring methods can be applied to evaluate the thermal stability of rock in underground mines, although the mechanisms by which these signals generated are different.

A Comparison Study on Flow-Friction Characteristic of Polymer Solution and Surfactant as Drag Reduction Additive (고분자물질 및 계면활성제의 유동마찰 저감 특성 비교 연구)

  • Ha, Jae-Sun;Ryu, Jae-Sung;Kim, Seong-Su;Cho, Sung-Hwan;Yoon, Seok-Mann;Eom, Jae-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.863-868
    • /
    • 2009
  • The drag reduction(DR) for Betaine+Amin and Xantan Gum as kinds of surfactant and Polyacrylamide as kinds of polymer solution according to the fluid velocity, temperature and surfactant concentration were compared experimentally. For this study, two kinds of experimental apparatus for short time and long time measurement were established. Each experimental appratus was equipped with hot water storage tanks, pumps, testing pipe network, flowmeter, two pressure gauges and data logging system was built for them. Results showed that Betaine+Amin and Xanthan Gum as kinds of surfactant had appeared optimal DR around 200-500 ppm and their DR tended to be decreased when flow velocity increased but Polyacrylamide as kinds of polymer solution showed the opposite trend to be increased when flow velocity increased. The both of them showed above 40% DR in the case of better condition by the short term measurement. But Polyacrylamide as kinds of polymer solution showed more degradation than Betaine+Amin and Xanthan Gum as kinds of surfactant by the long term measurement. As a result, Betaine+Amin and Xanthan Gum as kinds of surfactant showed better materials to use to the district heating system.

  • PDF

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

An Experimental Study on Friction Welding and Heat Treatment of Engine Exhaust Valve Steels ( SCr4-21-4 N , SUH3-21-4-N (기관배기 밸브용 강 ( SCr4-21-4N , SUH3-21-4N ) 의 마찰압접과 열처리에 관한 실험적 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.79-87
    • /
    • 1978
  • This is an experimental study on friction welding and heat treatment of engine exhaust valve materials whose welding combination is SCr4 as stem to 21-4N as head and SUH3 to 21-4N. In this study, not only the experiments of friction welding under the selected optimum welding condition and the examination of the mechanical properties were carried out, but also the heat treatment of friction welded specimens under the two selected conditions was taken to obtain the better welding character, eliminating the latent stress and the hardness peak which appeared at the welded zones of heat resisting steel(21-4N, SUH3) and low alloyed steel ($SCr_4$) friction weldments. The results obtained by the experiments and consideration in this study are as follows: I) It was experimentally proved quite reasonable that 'speed=3,OOO rpm, heating pressure Pl=8 kg/ mm2, upsetting pressure p, = 20 kg/mm', heating time $t_1$ = 3 see, upsetting time TEX>$t_2$ = 2.5 sec' was selected as the optimum welding condition for friction-welding the engine exhaust valve materials $SCr_4$ to 21-4 Nand SUH 3 to 21-4 N. 2) The results of the previous study and this one on friction welding of such dissimilar materials as SUH 3-SUH 31, SCr 4-SUH 31, SCr 4-SUH 3, SUH 3-CRK 22, SCr4-21-4 Nand SUH3-21-4 N agreed with each other substantially in the friction welding characteristics at welded interface zones. 3) It was also certified quite satisfactory that '600\ulcornerCX30 min. Xroom air cooling' as an optimum heat treatment condition of the friction welded materials SCr 4-21-4 Nand SUH 3-21-4 N was experimentally determined to eliminate the latent stress and the hardness peak at welded zones. 4) About 20% of the tensile strength before heat treatment of friction welded specimens was decreased after heat treatment 600\ulcornerCX30 min. Xair cooling, but the location of fracture was moved from heat affected zone to parent $SCr_4$ & SUH3. 5) Microscopic examination of the weld joints friction-welded and heat-treated under the above mentioned conditions revealed that the weld zone is very narrow and has a fine grained intermixed structure without any welding defects. 6) The above mentioned conditions can be also utilized as friction welding parameters of the other dissimiar materials for engine valve production.

  • PDF

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.