• Title/Summary/Keyword: Friction efficiency

Search Result 430, Processing Time 0.027 seconds

A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures (전통 민도리식 목구조 화통맞춤의 구조적 특성)

  • Yu, Hye-Ran;Kwon, Ki-Hyuk
    • Journal of architectural history
    • /
    • v.21 no.3
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

Analysis on the Friction Losses of a Bent-Axis Type Hydraulic Piston Pump

  • Hong, Yeh-Sun;Doh, Yoon-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1668-1679
    • /
    • 2004
  • The design of an axial piston pump for electro-hydrostatic transmission systems requires accurate information where and how much the internal friction and flow losses are produced. This study is particularly focused on the friction losses of a bent-axis type hydraulic piston pump, aiming at finding out which design factors influence its torque efficiency most significantly. To this end, the friction coefficients of the pump parts such as piston heads, spherical joints, shaft bearings, and valve plate were experimentally identified by a specially constructed tribometer. Applying the experimental data to the equations of motion for pistons as well as to the theoretical friction models for the pump parts, the friction torques produced by them were computed. The accuracy of the computed results was confirmed by the comparison with the practical input torque of the pump. In this paper, it is shown that the viscous friction forces on the valve plate and input shaft bearing are the primary source of the friction losses of the bent-axis type pump, while the friction forces and moments on the piston are of little significance.

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions (마찰조건에 따른 고강도 강판의 마찰특성 평가)

  • Kim, J. E.;Heo, J. Y.;Yoon, I. C.;Song, J. S.;Youn, K. T.;Park, C. D.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

Friction Characteristics of Magnetic Clutch Used in Automobiles (차량용 마그네틱 클러치의 마찰 특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2009
  • A magnetic clutch consists of pulley and disk. It delivers and isolates the power needed for the operation of the compressor used in automotive air conditioning system. To improve the performance, efficiency and durability of automotive air conditioning system, appropriate design of pulley, disk and system working parameters(the magnitude of magnetic force, and so on) is necessary. For that goal, it is required to understand the friction characteristics of magnetic clutch for the initial operating time. In this study, friction tests were carried out in order to investigate the effect of sliding velocity on the friction characteristics of magnetic clutch using pin-on-disk type friction and wear tester. For experiments, pulley and disk used in real automotive air conditioning system were considered. Friction experiments were conducted under various sliding velocities, and coefficients of kinetic friction were obtained. Under the experimental conditions considered in this study, the coefficients of kinetic friction increased with the increase of test number(sliding distance) and decreased with the increase of sliding velocity.

The effect of friction on magnetorheological fluids

  • Li, W.H.;Zhang, X.Z.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • This paper presents an experimental approach to study the effect of friction on magnerorheological (MR) fluids. Both steady and dynamic modes were employed to investigate MR fluid behaviors. The experimental results indicate that the total MR effects are dominated by two factors: magnetic force and friction force. Conventionally, the magnetic force contribution to MR effect has been intensively studied while the friction force effect has attracted less attention. This study provides a method to quantitatively predict the friction contribution to the total MR effect. It may be used to effectively analyze enhanced MR effects reported by other groups. Also, it might provide good guidance to develop high-efficiency MR fluids.

Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers (마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성)

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF

Friction Characteristics between the Cylinder Block and the Spherical Valve Plate in Hydraulic Axial Piston Pump (유압 액셜 피스톤 펌프에서 실린더 블록과 구면 밸브 플레이트 사이의 마찰 특성)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, it is need to know the various characteristics in the sliding contact parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump in experimentally. Results are arranged as follow; (1) friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio in valve plate. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Friction characteristics between the cylinder block and the valve plate in axial piston pump (액셜 피스톤 펌프에서 실린더 블록과 밸브 플레이트 사이의 마찰 특성)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.249-255
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, we have to know the various characteristics in the sliding parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump by using of modeling experiment. The main results of this study are these; (1) Friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

  • PDF