• Title/Summary/Keyword: Friction efficiency

검색결과 431건 처리시간 2.239초

The Effect of Graphite and MoS2 on Endurance and Cutting Performance of Diamond Micro Blades (다이아몬드 마이크로블레이드의 내구성과 절삭성능에 미치는 흑연과 MoS2의 첨가효과)

  • Moon, Jong-Chul;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • 제41권6호
    • /
    • pp.335-340
    • /
    • 2008
  • Cutting performance and wear behavior were studied with the diamond micro-blade of Cu/Sn bond materials containing various amount of lubricant materials such as graphite and $MoS_2$. Measurement of instantaneous electric power consumption for cutting glass workpiece at the constant velocity was conducted and proposed as a method to assess cutting efficiency. The energy consumption of micro-blade for glass cutting decreased with the content of graphite and $MoS_2$ while wear amount of blade in volume increased with the amount of lubricant addition during the dicing test. It is because that hardness, flexural strength, and fracture toughness ($K_{IC}$) reduced with the amount of lubricant addition. Blades with $MoS_2$ additive showed higher mechanical properties than those with graphite additives when the same amount of the lubricant additive in wt.% was added. Due to the lower density of graphite than $MoS_2$, higher volume fraction of graphite could result in stronger effect on lowering electric power consumption by reducing the friction between blade and work piece however increasing wear rate due to the reduction in strength and fracture toughness. Adhesive wearing mode of micro blade could be remarkably improved by the addition of graphite as well as $MoS_2$.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제34권4호
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Development of Isothermal Pass Schedule Program for the Re-design of a Continuous High Carbon Steel Wire Drawing Process (고탄소강 연속 신선 공정의 재설계를 위한 등온패스스케줄 프로그램의 개발)

  • Kim, Young-Sik;Kim, Dong-Hwan;Kim, Byung-Min;Kim, Min-An;Park, Yong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제18권5호
    • /
    • pp.57-64
    • /
    • 2001
  • The high speed in the wire-drawing process to meet the demands for the increased productivity has a great effect on the heat generated due to plastic deformation and friction between the wire and the drawing dies. During the high carbon steel wire drawing process, the temperature rise gives a great influence to the fracture of wire. In this paper, to control the temperature rise in the wire after the deformation through the drawing die, the calculation method of the wire temperature, which includes the temperature rise in the deformation zone as well as the temperature drop in the block considering the heat transfer among the wire, cooling water and surrounding air, is proposed. These calculated results of the wire temperature at the inlet and exit of the drawing die at each pass are compared with the measured wire temperatures and verified its efficiency. So, using the program to predict the wire temperature, the isothermal pass schedule program was developed. By applying this isothermal pass schedule program to the conventional process condition, a new isothermal pass schedule is redesigned through all passes. As a result, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

  • PDF

Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal (수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Choi, ChangHo;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제23권4호
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

Octopus fisheries in the coastal waters of Gangneung - I - Pot fishery - (강릉시 연안 문어어업에 관한 연구- I - 통발어업 -)

  • An, Young-Il;Park, Jin-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제41권4호
    • /
    • pp.271-278
    • /
    • 2005
  • In order to study the catch situation of the octopus pot fishery in the coastal waters of Gangneung, catch quantities and weight per month and depth, the soaking time & loss of fishing gear were studied based on 62 fishing times (1 set consisted of 150 pots which is equivalent to 1 fishing time) over a period of 10 months from February to December 2003 using commercial fishing vessels and training ships. The monthly CPUE was generally high in the months of june - September, and during this period July showed the highest quantity (134g/pot, 19.21kg/haul). In consideration of the fact that octopus below the weight of 2kg is protected in foreign countries, the majority of the catch was small with 76% (486 octopuses) below 1kg. The octopus catch quantity was high in depth of more than 40m, and the average catch number per set of pots in depths of over 50m was the highest with 13 octopuses. CPUE(g/pot) was the highest at a depth of over 60m recording 101. In terms of catch quantity per soaking time (4-18 days) the highest was on the 7th day, and 13-18 days also recorded high catches, and this suggests the possibility of ghost - fishing with the loss of fishing gear. Loss of fishing gear was the highest in terms of loss frequency and amount at depths of 20-30m. Consequently, it seems that octopus pot fishing at depths of more than 30m would relieve friction with other types of fishing and increase fishing efficiency.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • 제32권2호
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

An Experimental Study on the Performance of Multi-Diameter Lateral for Riverbed Filtration (하상여과용 다직경 수평집수관의 효능에 대한 실험연구)

  • Bae, Gha-Ram;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제34권5호
    • /
    • pp.359-364
    • /
    • 2012
  • In order to prevent the decrease in well efficiencies due to friction in the axial flow in long, large-diameter laterals, a multi-diameter lateral was devised and tested through lab-scale sand-box experiments to assess its performance. In the experiment, three different production rates were applied over the multi-diameter and the three single-diameter laterals to obtain the hydraulic head distributions for each, which was used to assess the performance of the laterals. Results elucidated that the multi-diameter lateral reduced the material cost by more than a third, in comparison to the single-diameter lateral, while maintaining the production rate at higher than 93%, proving its superiority. Furthermore, results indicated that exit velocities exceeding 0.8 m/sec in horizontal wells tended to distort the hydraulic head distribution near the exit, providing evidence of its inefficiency.

Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing (세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok;Ahn, Kookyoung;Lee, Youngduk
    • The KSFM Journal of Fluid Machinery
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

Design of Magnetic Bearings for 200 HP Class Turbo Blower (200 마력급 터보 블로워 적용을 위한 자기베어링 설계)

  • Park, Cheol Hoon;Yoon, Tae Gwang;Park, Jun Young
    • The KSFM Journal of Fluid Machinery
    • /
    • 제18권6호
    • /
    • pp.12-18
    • /
    • 2015
  • Recently, the development trend of turbomachinery is high capacity and high efficiency. Most of turbomachinery in the market are adopting ball bearings or air foil bearings. However, ball bearings have a limit for high speed product over $2.0{\times}10^6DN$(product of the inner diameter of the bearing in mm (D) and the maximum speed in rpm (N)). Air foil bearings have a limit for high axial load for high power products over 200~300 HP(horse power). Magnetic bearing is one of the solutions to overcome the limits of high speed and high axial load. Because magnetic bearings have no friction between the rotor and the bearings, they can reduce the load of the motor and make it possible to increase the rotating speed up to $5.0{\times}10^6DN$. Moreover, they can have high axial load capacity, because the axial load capacity of magnetic bearing depends on the capacity of the designed electromagnet. In this study, the radial and thrust magnetic bearings are designed to be applied to the 200 HP class turbo blower, and their performance was evaluated by the experiment. Based on the tests up to 26,400 rpm and 21,000 rpm under the no-load and load condition, respectively, it was verified that the magnetic bearings are stably support the rotor of the turbo blower.