• Title/Summary/Keyword: Friction anchor

Search Result 48, Processing Time 0.019 seconds

Pullout Behavior of Typical friction Anchors and Development of Design Method (앵커 형식별 인발거동과 설계법 개발)

  • 송일준;김가야;홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.43-51
    • /
    • 2003
  • The resistance mechanism of anchor changes according to the types of anchor. Friction anchors are classified into tension and compression types. In this study, the characteristics and mechanism of pullout are analysed, and the design method of anchor and computer program for design are developed through compression test results of anchor body grout. The characteristics of compression anchor, compared with tension anchor, are summarized mainly as follows: (1) The effect of progressive failure of compression anchor body are much smaller than those of tension anchor during pullout of anchor: (2) The skin friction resistance is increased by Possion effect of grout (anchor body) during pullout of compression anchor.

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF

Numerical Analysis for the Deformation of a Mono Tendon Anchor Head (모노 텐던 앵커 헤드의 변형 추정을 위한 수치해석)

  • Park, Jang Ho;Yang, Hyun Joo;Cho, Jeong-Rae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • This paper deals with a numerical study on the deformation of a mono tendon anchor head. The anchor head is used to introduce the compression to concrete, and consists of wedges and a head. All kinematics, material and contact nonlinearity are included in the precise analysis of a mono tendon anchor head. A numerical study on a mono tendon anchor head is performed to investigate effects of friction and eccentricity of load by ABAQUS. From the numerical results, it is verified that the deformation of a mono tendon anchor head is affected by characteristics of materials, boundary condition between wedge and anchor head, eccentricity of load, etc.

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

A Case Study on CGP Anchor of Open-Cuts in Soft Ground (연약지반에서 CGP-앵커의 시공사례연구)

  • 천병식;양형칠;박신영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.621-628
    • /
    • 2002
  • Compaction Grouting Pack (CGP) Anchor which is composite anchor of bearing plus friction-type was chosen and executed for the open-cuts in soft ground. This paper presents an analysis of data from tests on composite-anchor by jacking force. The properties of composite-anchor was presented to be as follows , the maximum plastic displacement was 60 mm in abandoned coal fill deposit, the shear stress($\tau$) is expressed as $\tau$ = (equation omitted) kg/$\textrm{cm}^2$ in clayey silt.

  • PDF

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Improvement in uplift capacity of horizontal circular anchor plate in undrained clay by granular column

  • Bhattacharya, Paramita;Roy, Anamitra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.617-633
    • /
    • 2016
  • A numerical study has been conducted to examine the improvement achieved in the ultimate pullout capacity of horizontal circular anchor plates embedded in undrained clay, by constructing granular columns of varying diameter over the anchor plates. The analysis has been carried out by using lower bound theorem of limit analysis and finite elements in combination with linear programming. The improvement in uplifting capacity of anchor plate is expressed in terms of an efficiency factor (${\xi}$). The efficiency factor (${\xi}$) has been defined as the ratio of ultimate vertical pullout capacity of anchor plate having diameter D embedded in soft clay reinforced by granular column to the vertical pullout capacity of the anchor plate with same diameter D embedded in soft clay only. The variation of efficiency factor (${\xi}$) for different embedment ratios and different diameter of granular column has been studied considering a wide range of softness of clay and different value of soil internal friction angle (${\phi}$) of the granular material. It is observed that ${\xi}$ increases with an increase in diameter of the granular column ($D_t$) and increase in friction angle of granular material. Also, the effectiveness of the usage of granular column increases with decrease in cohesion of the clay.

Development of umbrella anchor approach in terms of the requirements of field application

  • Evirgen, Burak;Tuncan, Ahmet;Tuncan, Mustafa
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2019
  • In this study, an innovative anchoring approach has been developed dealing with all relevant aspects in consideration of previous works. An ultimate pulling force calculation of anchor is presented from a geotechnical point of view. The proposed umbrella anchor focuses not only on the friction resistance capacity, but also on the axial capacity of the composite end structure and the friction capacity occurring around the wedge. Even though the theoretical background is proposed, in-situ application requires high-level mechanical design. Hence, the required parts have been carefully improved and are composed of anchor body, anchor cap, connection brackets, cutter vanes, open-close ring, support elements and grouting system. Besides, stretcher element made of aramid fabric, interior grouting system, guide tube and cable-locking apparatus are the unique parts of this design. The production and placement steps of real sized anchors are explained in detail. Experimental results of 52 pullout tests on the weak dry soils and 12 in-situ tests inside natural soil indicate that the proposed approach is conservative and its peak pullout value is directly limited by a maximum strength of anchored soil layer if other failure possibilities are eliminated. Umbrella anchor is an alternative to conventional anchor applications used in all types of soils. It not only provides time and workmanship benefits, but also a high level of economic gain and safe design.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF