• 제목/요약/키워드: Friction Welded

검색결과 304건 처리시간 0.024초

이종마찰용접 강봉재의 기계적특성과 비파괴 평가 (The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars)

  • 정원택;공유식;김선진
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

이종 마찰용접 강봉재의 후열처리에 따른 기계적 특성 (Mechanical Properties of Dissimilar Friction Welded Steel Bars in Relation to Post Weld Heat Treatment)

  • 공유식;김선진
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.402-408
    • /
    • 2006
  • Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and post-weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=60(MPa),\;P_2=100(MPa),\;t_1=4(s),\;t_2=5(s)$ when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질 (Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.

Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

  • Paik, Jeom-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.39-49
    • /
    • 2009
  • The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW), laser welding and friction stir welding (FSW), FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base) alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009), jointly funded by its member agencies.

용접조건이 AI-7075-T651의 마찰교반용접부의 경도와 미세조직에 미치는 영향 (Effects of Welding Condition on Hardness and Microstructure of Friction Stir Welded Joints of AI-7075-T651 Plate)

  • 김치옥;손혜정;김선진
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.58-64
    • /
    • 2011
  • As well known, the friction stir welding is a novel welding process which is a solid state welding process for sheet or plate using the friction stir phenomenon. This paper describes the effect of welding condition such as the rotation speed and the travelling speed during the friction stir welding process on the micro Virkers hardness and the microstructure of friction stir welded joints in AI-7075-T651 plate. From those investigations, the highest hardness of stir zone was observed at the welding condition of SO-3. The microstructures of the friction stir welded joints was not dependent on the welding conditions, but in the SO-4 specimen, the friction stir welding defect like tunnel shape was found in stir zone.

해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성 (Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle)

  • 공유식;이진경;강대민
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(1) (A Study on fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(I))

  • 서창민;서덕영;이동재
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.918-928
    • /
    • 1995
  • This paper deals with the various mechanical properties and fatigue strength in the FRW1 (friction welded interface) of high speed steel (HSS-Co) to SM55C through the tensile test, hardness test and fatigue test. The data of FRW specimens are also compared with those of the base materials (HSS-Co and SM55C steel). Three kinds of specimens used in this study are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. It is confirmed that the applied welding conditions are optimum methods in order to minimize the heat affected zone (HAZ) and hardness distribution at the HAZ. The fatigue strengths at N = 10$^{6}$ cycles of smooth, circumferential notch and saw notch specimens in the FRW joints are about 299.2 MPa, 123.8 MPa and 247.5 MPA, respectively. The fatigue strength of the friction welded joints is almost equal to that of the SM55C carbon steel in the optimum welding conditions. The fatigue cracks initiated at the welded zone are propagated along the side of SM55C steel.

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

마찰접합 된 STK400 Tube의 미세조직과 기계적 특성 평가 (Evaluation of the Microstructures and Mechanical Properties on Friction Welded STK400 Tube)

  • 김경우;송국현
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.30-36
    • /
    • 2019
  • We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from $15.1{\mu}m$ in the base material to $4.5{\mu}m$ in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions.

경두레일 용접부의 미끄럼 환경변화에 따른 마찰 및 마멸특성 연구 (Experimental Study on Friction and Wear Characteristics of Head Hardened Weld Rails Under Various Sliding Environments)

  • 김청균;황준태
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.345-353
    • /
    • 1999
  • This paper presents friction and wear related results of thermite and gas pressure welded rails under various environmental contact conditions. A welded rail which is manufactured by thermite welding and gas pressure one has been tested rail full range of test conditions in a pin-on-disk wear testing machine. The results show that the friction coefficient and wear rates of a welded rail are heavily dependent on the contact pressures and sliding environments for two welding methods such as thermite and gas pressure weldings.

  • PDF