• Title/Summary/Keyword: Friction Snubber

Search Result 4, Processing Time 0.015 seconds

Friction Snubber Development Using Sponge Iron (환원분철을 이용한 마찰식 완충기 개발)

  • 김병삼
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1021-1028
    • /
    • 2004
  • Developed friction snubbers changes the shock or vibration into a heat energy by mechanical friction. Snubber is divided into friction snubbers and hydraulic snubbers according to the operation types. However, hydraulic snubber has a lot of problems caused by temperature, humidity, radioactivity, and viscosity of hydraulic fluid. In these respects, to solve these problems, not only do friction snubber supplement lacks of hydraulic snubber but has also simpler structure than hydraulic snubber. In this paper, friction snubber used sponge iron by friction material is experimentally compared with general friction snubber In this results, the experiment verifies friction function and produce the manufacture condition for the effective friction snubber development.

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

The Development of Mechanical Damper Using the Friction Pendulum Principle (마찰 진자 원리를 적용한 기계식 댐퍼의 개발에 관한 연구)

  • Lee, You-In;Han, Woo-Jin;Ji, Yong-Soo;Baek, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • Recently, the earthquake has been increasing a lot, damage of electric power facility has been serious as well. Nowadays, the importance of pipe support system such as Hanger, Brace, Snubber connecting the main structure have been emphasized. These devices can prevent pipe from damage so that reduce the vibration and shock acting on the pipe. For this reason, the FCD(Friction Concave Damper) was developed and has been expected to reduce the vibration on the pipe through the Friction Pendulum System. This paper was described the introduction of self-developed mechanical damper using the friction pendulum principle and the characteristic test was performed to verify the performance of the device. Additionally the test results have been compared with predicted F.A.P(FCD Analysis Program-self developed) results. As a result, reliability of design could be improved.

Vibration Analysis of the Base Supported Washing Machine Considering Frictional Effect in Snubber (스너버에서의 마찰을 고려한 하부지지형 세탁기의 동특성 연구)

  • 최상현;김주호;한동철;한창소
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1995
  • The vibration of the dehydration process in a washing machine is important problem that affects the performance of products. In this paper, the upper structure of a washing machine is modeled as rigid body suspension system and, by numerical analysis, the amplitude of a spin basket and the transfer moment at a base plate are calculated. To examine the vibrational characteristics according to design variable change, the friction coefficient in anubber, the radius of curvature, the stiffness coefficient, initial length and locations of support springs are considered in the analysis. Experimental results are compared with those of analysis.

  • PDF