• Title/Summary/Keyword: Friction Material

Search Result 1,268, Processing Time 0.027 seconds

A Study on the Development of Cu Free Friction Material of Composite Brake to Response Eco-friendly Regulation (친환경 법규 대응을 위한 복합재 브레이크의 Cu Free 마찰재 개발에 관한 연구)

  • Shim, J.H.;Lee, J.H.;Shin, U.H.;Lim, D.W.;Hyun, E.J.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 2022
  • Composite material is widely used in the automotive industries because it has excellent mechanical properties and is possible to reduce weight due to the low density. However, there is a new obstacle to meet environment regulation like Cu less or Cu free regulation for the friction material. Although it is strongly demanded, there are few research results about that unfortunately. Unless this problem is not solved properly, it is impossible to apply composite brake system to vehicle. In this paper, a new eco-friendly friction material for composite brake system is represented to respond these regulations. To do this, friction characteristics between existing low steel friction material and new eco-friendly friction material are verified to secure performances for brake system such as effect characteristic, fade characteristic and wear characteristic. And composite brake gets the equivalent or better performance compared to a low steel friction material. Finally, this result contributes to the study of major principles for the development of eco-friendly friction material in the future.

Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials (금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성)

  • Kim, JinWoo;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

Thermal Characteristics and Friction and Wear Characteristics of Phenolic Resin and Friction Material with the Content of Acrylonitrilebutadienerubber (Acrylonitrilebutadienerubber의 함량에 따른 페놀수지 및 마찰재의 열특성 및 마찰 .마모 특성)

  • Kim, Chang-Jea;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.114-114
    • /
    • 2001
  • The thermal and friction characteristics of phenolic resin and model friction materials were investigated with the content of acrylonitrilebutadienerubber(NBR). The thermal characteristics of material was performed by dynamic mechanical thermal analysis and differential scanning calorimetry. The friction and wear characteristics of the material were determined by using friction material testing machine. The results show that with the more content of rubber, the loss modulus of friction material was increased. The friction coefficient and the specific wear rate with various NBR contents were reported.

  • PDF

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Tribology of friction materials containing different metal fibers (마찰재에 함유된 금속섬유의 종류에 따른 마찰 특성)

  • Ko, Kil-Ju;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.55-63
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated using a pad-on-disk type friction tester. Two different materials(gray iron and Al-MMC)) were used for disks rubbing against the friction materials. Results from ambient temperature tests revealed that the friction material containing Cu fibers sliding against cast iron disk showed a distinct negative ${\mu}$-ν (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speed. The negative ${\mu}$-ν relation was not observed when the Cu-containing friction materials were rubbed against the. Al-MMC counter surface. As applied loads increased, friction materials showed higher friction coefficients comparatively. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and the steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

  • PDF

Tribological properties of the brake friction materials without environmentally regulated ingredients (친환경 규제 원료를 제거한 마찰재의 마찰 특성에 관한 연구)

  • Lim, Se-Eun;Lee, Wan-Gyu;Shin, Min-Wook;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.246-253
    • /
    • 2010
  • Friction characteristics of the brake friction materials without environmentally regulated ingredients were examined to find their role in the brake performance. Five friction materials were produced based on a nearcommercial formulation by changing the relative amount of potentially hazardous ingredients to health and environment, such as $Sb_2S_3$, potassium titanate, and brass fiber. Tribological properties of the friction materials were obtained using a scale dynamometer and Krauss type tribometer. Results showed that the excluded three ingredients played important synergetic effects on tribological properties in terms of fade resistance, wear resistance and friction effectiveness. In particular, brass fibers played important roles in the friction stability by providing excellent thermal diffusivity at the friction interface. Potassium titanate whiskers showed excellent fade resistance and wear resistance compared to the substituted barite. Antimony trisulfide, on the other hand, showed little effect on the high temperature fade resistance and wear resistance, while it increased friction effectiveness at moderate temperatures. The friction materials without the three ingredients showed severe fade, indicating antisynergy effects.

Characteristics of Friction Affecting CMP Results (CMP 결과에 영향을 미치는 마찰 특성에 관한 연구)

  • Park, Boumyoung;Lee, Hyunseop;Kim, Hyoungjae;Seo, Heondeok;Kim, Gooyoun;Jeong, Haedo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1041-1048
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various friction signals were attained and analyzed with the kind of pad, abrasive and abrasive concentration. As a result of experiment, the lubrication regime is classified with ηv/p(η, v and p; the viscosity, relative velocity and pressure). The characteristics of friction and material removal mechanism is also different as a function of the kind of abrasive and the abrasive concentration in slurry. Especially, the material removal per unit distance is directly proportional to the friction force and the non~uniformity has relation to the coefficient of friction.

Wear Assessment for Non-asbestos Friction Material against Cast Iron Drum (비석면 마찰재의 주철제 드럼에 대한 마멸 평가)

  • 한성호;이성만;신두식;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.117-121
    • /
    • 1996
  • Friction and wear test for non-asbestos material against cast iron drum were carried out to investigate the friction and wear characteristics of brake system. Its friction coefficient and wear volume were measured and compared with those of asbestos friction material. The experiment. was perforated tinder room temperature and various sliding conditions. After each experiment, the sin-faces of friction materials were observed by SEM.

  • PDF