• 제목/요약/키워드: Friction Disturbance

검색결과 137건 처리시간 0.027초

외란 관측기를 이용한 리니어 BLDC 모터의 정밀위치제어 (Precise Positioning Control of Linear Brushless DC Motor using Disturbance Observer)

  • 고재원;이교범;구영모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2399-2401
    • /
    • 2001
  • This Paper presents a positioning control method of the LBLDCM(Linear Brushless DC Motor) under friction. The friction may cause steady state position error. So it is necessary to consider friction effect for precision positioning control. The proposed control method uses disturbance observer algorithm and friction compensation. The experimental results of the proposed control method based on the disturbance observer are presented to show its effectiveness.

  • PDF

Disturbance Observer- Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권5호
    • /
    • pp.5-14
    • /
    • 2003
  • Tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate fer effects of friction. The conventional SMC method often shows poor tracking performance in high-precision position tracking application since it cannot completely compensate for the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the SMC method combined with the disturbance observer having tunable transient performance. Then this control scheme has the high precise tracking peformance as well as a good transient response when it is compared with the conventional SMC method and the similar types of observers, The experiment on the XY ball-screw drive system with the nonlinear dynamic friction confirms the feasibility of the proposed control scheme.

비선형 마찰을 갖는 전동 실린더의 위치제어에 관한 연구 (A Study on the Position Control of a Motor Cylinder with Nonlineal Friction)

  • 변정환
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.80-86
    • /
    • 2008
  • A motor cylinder apparatus is used to transfer a load in industrial applications. The apparatus is composed of a motor and power transmission elements such as worm gear and screw. In this case, the nonlinear friction of the transmission elements has a bad influence on the position control performance. To overcome this problem, the position control system consists of a feedback controller to achieve nominal control performance and a disturbance observer to compensate nonlinear friction. Especially the filter of a disturbance observer is designed from viewpoint of robust stability. Finally, the simulation result shows that the proposed control system is effective for the disturbance elimination as well as the friction compensation.

  • PDF

공압매니퓰레이터의 임피던스제어를 위한 마찰보상법 (Friction Compensation for Impedance Control of Pneumatic Manipulator)

  • 박정규
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.252-260
    • /
    • 1997
  • In this paper, a friction compensation method using a disturbance observer is proposed for an impedance control of pneumatic manipulator. It is assumed that the generated torque by a pneumatic actuator can be estimated based on the pressure signals and the discharge volume. In order to improve the dynamic characteristics of the pneumatic actuator driven by meter out method, we construct the inner torque control system by feeding back the generated torque. In order to reduce the influence of disturbances comprising friction torque and parameter variations of plant, the impedance control system is constructed with a disturbance observer which estimates the disturbances based on the generated torque of pneumatic actuator, the angular velocity and the reaction torque. From some experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque in the impedance control of a pneumatic manipulator.

병렬 구동 매니퓰레이터의 외란 및 속도 추정을 이용한 정밀 위치 제어 (Precise Position Vontrol of an In-Parallel Actuated Manipulator Using Disturbance and Velocity Observer)

  • 최용훈;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1796-1799
    • /
    • 1997
  • This thersis presents precise position control emthods of a 3-PRPS in-parallel manipulator for industrial applications such as assembly of highly integrated semiconductors and microsurgery. Since real-time ontrol is one of the most important issues required for industrial application, the experimental hardware is set up with a VME based DSP controller. In the 3-PRPS parallel mainpulator, structurally existing frictiion at three horizontal links considerably degrades the precise position control. In order to compensate the friction of the horizontal links in the joint space, a disturbance compensation usign disturbance and velocity observers has been proposed and investigated. We analyzed the decision method of eigenvalues of the disturbance observer and the effects of the control resulted form tehsystem model errors. Through a series of simulations and experiments, we see that the methods is capable of compensating variations of the robot parameters such as inertia and damping as well as the joint friction. Experiments show that the disturbance compensation method usign disturbance and velocity observer is very effective to compensate the friction. Compared with conventional PID position control, it decreased position errors ina circular motion by approximately 70%.

  • PDF

베어링 예압 및 오일양에 따른 반작용 휠 성능 분석 (Performance Analysis of Reaction Wheel according to Bearing Preload and Oil Quantity)

  • 김지철;윤진혁;이준용;오화석
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2016
  • Bearing friction and disturbance are the important parameters in control spacecraft using reaction wheel. In this paper, those parameters are estimated by preload and oil quantity. In order to determine the bearing preload's impact on performance, measure the disturbance and the bearing friction coefficient with increasing the preload to the allowed amount. And, find the relationship between oil quantity and bearing friction coefficient, measure it with increasing the oil amount in the bearing. With these results as a reference, find the appropriate amount of preload and oil quantity.

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

적분 제어기 정보를 이용한 비선형 마찰보상 (Nonlinear Friction Compensation using the Information of Integral Controller)

  • 송진일;최용훈;유지환;권동수
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.110-119
    • /
    • 2000
  • This paper presents simple and effective nonlinear friction compensation methods. When the direction of position command reverses, the integrator output of the PID controller does not change the sign of its output instantaneously, due to friction at zero velocity, i.e. stiction resulting tracking errors, that results in continuous push even though the command direction has been changed. To overcome this problem, we attempt to reverse the sign of the integrator output as the sign of velocity changes. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Shperical joints) in-parallel 6-D.O.F manipulator. The control strategy has been analyzed for stability. Also discussed are disturbance observer and velocity observer approaches for friction compensation.

  • PDF

2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별 (A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control)

  • 여성민;강민식
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

Robust Friction Compensation Control Using a Nonliner Observer

  • Nakamura, Yuichiro;Niwa, Shohei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.108.5-108
    • /
    • 2001
  • The research of friction compensation control system seeks the accuracy, the velocity increase of the table, and the settling time reduction. The friction is the disturbance which has the greatest influence, but the past research of control system doesn´t perform exact modeling of the friction. So this research aims at the friction compensation control system, the exact modeling of the friction, comparison between the model simulation and experimental data, and the design of observer for the friction estimation.

  • PDF