• Title/Summary/Keyword: Freundlich kinetic model

Search Result 164, Processing Time 0.021 seconds

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid (베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착)

  • Jeon, Han Gyeol;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • One of biopolymer, β-glucan (BG) chains were crosslinked by citric acid under the heating condition for the adsorption of Pb and Cu ions in the aqueous solution. The variation of functional groups on BG itself and crosslinked β-glucan (CBG) with their surface adsorption characteristics were investigated by FTIR and SEM-EDX. Adsorption kinetic results showed that adsorption of Pb and Cu onto the CBG followed the pseudo-second-order kinetic model and intra-particle diffusion model. The Langmuir adsorption model was depicted better adsorption characteristics than the Freundlich model. The adsorption capacities of Pb and Cu onto the CBG estimated by the Langmuir model were 59.70 and 23.44 mg/g, respectively. This study suggested that CBG may act as an eco-friendly adsorbent for the adsorption of Pb and Cu in the aqueous solution.

A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase (석탄광산배수슬러지를 이용한 액상상태의 비소제거 흡착특성 및 반응속도에 관한 연구)

  • Lee, Se-Ban;Cui, Ming-Can;Jang, Min;Moon, Deok-Hyun;Cho, Yun-Chul;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 2011
  • In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).

Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films (미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성)

  • Ji Won Yang;Youn-Jun Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

Equilibrium modeling for adsorption of NO3- from aqueous solution on activated carbon produced from pomegranate peel

  • Rouabeh, I.;Amrani, M.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.143-151
    • /
    • 2012
  • Nitrate removal from aqueous solution was investigated using $ZnCl_2$ and phosphoric acid activated carbon developed from pomegranate peel with particle size 0.4 mm. Potassium nitrate solution was used in batch adsorption experiments for nitrate removal from water. The effects of activated carbon dosage, time of contact, and pH were studied. The equilibrium time was fond to be 45 min. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir fit the isotherm with the theoretical adsorption capacity ($q_t$) was fond 78.125 mg g-1. Adsorption kinetics data were modeled using the pseudo-first, pseudo-second order, and intraparticle diffusion models. The results indicate that the second-order model best describes adsorption kinetic data. Results show activated carbon produced from pomegranate is effective for removal of nitrate from aqueous solution.

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.