• Title/Summary/Keyword: Freundlich isotherm

Search Result 420, Processing Time 0.023 seconds

The applicability of Freundlichs isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Jong Ho Youn;Heo
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.9.2-19
    • /
    • 1993
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash (RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portaind Rice Husk Ash Cement (PRHAC) which contained rice husk ash U percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Biosorption of Heavy Metal Sons by Biomass of Marine Brown Algae in Cheju using Their immobilization Techniques: Biosorption of Copper by Undaria pinnatifida

  • Sang-Kyu Kam;Min-Gyu Lee
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.157-166
    • /
    • 1992
  • The biosorptlon perFormances of copper were Investigated by the immobilized biomass of nonliving marine brown algae Undaria pinnatifida by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. Among the immobilization methods, the copper uptake decreased in the following sequence: Ca-ALG > Ba-ALG > PEG > CARR. The pattern of copper uptake by the immobilized biomass fitted the Langmuir isotherm better than the Freundlich isotherm. Desorption of deposited copper with 0.05 ~0.5M HCI, resulted in no changes of the copper uptake capacity of the immobilized biomass by the immobilization methods except for PEG, through five subsequent biosorptioydesorption cycles. There was no damage to the immobilized biomass which retained its macroscopic appearance in repeated copper uptake/elution cycles.

  • PDF

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene onto Sylopute (실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성)

  • Cho, Da-Nim;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.127-134
    • /
    • 2020
  • The adsorption characteristics of the major tar compound, acenaphthene, derived from Taxus chinensis by the commercial adsorbent Sylopute were investigated using different parameters such as initial acenaphthene concentration, adsorption temperature, and contact time. Out of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models, adsorption data were best described by Langmuir isotherm. The adsorption kinetics was evaluated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. Thermodynamic parameters revealed the feasibility, nonspontaneity and exothermic nature of adsorption. In addition, the isosteric heat of adsorption was independent of surface loading indicating the Sylopute used as an energetically homogeneous surface.

Sorption Characteristics of Tetracycline in Water on Microplastics (수중 테트라사이클린의 미세플라스틱에 대한 흡착 특성)

  • Yu Jin Seo;Ruri Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • BACKGROUND: Plastics that are used in our daily lives largely end up in the environment. In agricultural environments, plastic wastes and microplastics can be found due to the uses and improper management of plastic products (e.g., vinyl greenhouses and mulching vinyl). Microplastics can also interact with contaminants in the agricultural environment. Therefore, this study was set to investigate the sorption characteristics of tetracycline, one of widely used antibiotics, on microplastics. METHODS AND RESULTS: The sorption tests were carried out with the tetracycline solutions (0-30 mg L-1) and microplastic films prepared from low density polyethylene (LDPE) and polyvinyl chloride (PVC). The residual tetracycline concentrations were analyzed and fitted to the Freundlich and Langmuir isotherm models. The tetracycline sorption patterns on LDPE and PVC films were described better with the Freundlich isotherm model than the Langmuir isotherm model. The isotherm model parameters suggested that the maximum sorption amount of tetracyline was greater for PVC, while the sorption affinity was greater for LDPE. CONCLUSION(S): Different types of microplastics can have different sorption characteristics of tetracycline. Therefore, there is a need for continuous research on the interaction of various types and shapes of microplastics and contaminants in the environment.

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

A Study on the Adsorption Characteristics of Benzene using Activated Carbon from Sewage Sludge (하수슬러지 활성탄의 벤젠 흡착특성)

  • Kim, Jong-Moon;Chung, Chan-Kyo;Lee, Taek-Ryong;Min, Byong-Hun;Kim, Hyung-Jin;Kwon, Young-Shik
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • In this study the experiments on the static adsorption of benzene were carried out using activated carbon made from sewage sludge. The experiment was performed at 303.15 K, 318.15 K and 333.15 K under the pressure up to 7.999kPa. Isothermal adsorption curves were obtained using Langmuir isotherm, Freundlich isotherm and Toth isotherm for comparison. Based on fitting the adsorption quantity of Benzene (q), the isothermal adsorption curves obtained from Langmuir isotherm and Toth isotherm showed the higher accuracy. Although there was little difference in accuracy between result from Langmuir isotherm and that from Toth isotherm, the adsorption quantity of Benzene (q) was expressed in terms of Langmuir isotherm because less parameters were required for Langmuir isotherm than for Toth isotherm. Moreover SEM images of the activated carbon from sewage sludge and the commercial activated carbon were taken to observe the pore size development. The results showed that the perforation development of the commercial activated carbon (DARCO A.C., SPG-100 A.C.) was better than that of activated carbon from sewage sludge. Adsorption quantity of benzene on commercial activated carbon was confirmed to be higher than that on activated carbon from sewage sludge. However the maximum adsorption quantity of benzene on activated carbon from sewage sludge was close to that on SGP-100 A.C. at 303.15K. Therefore, we may conclude that it is feasible to commercialize the process to manufacturing activated carbon from sewage sludge.

A comparative study for adsorption of carbolic acid by synthetic resins

  • Uslu, Hasan;Bamufleh, Hisham S.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.