• Title/Summary/Keyword: Freundlich

Search Result 630, Processing Time 0.027 seconds

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

The Effect of Organic Matter and Lime Treatment on Trichloroethylene Adsorption by Soil (유기물과 석회 처리 수준이 토양의 Trichloroethylene 흡착에 미치는 영향)

  • 이군택;류순호;이민효
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1996
  • Trichloroethylene(TCE) is the organic compound which is used variously at the industrial areas. It contaminates soils and groundwater by leaked storage tank, careless treatment in field and the effluent from waste landfills. This study was carried out to identify adsorptive behavior of TCE by soil. Batch experiments were conducted at different soil-organic matter content and lime treatment to determine Freundlich isothermal adsorption equation constant, k and n, for TCE. Sewage sludge cake was applied to make different soil-organic matter content with the level of Oton/ha(S1), 50ton/ha(S2), 100ton/ha(S3). Lime(calcium hydroxide) was treated with the level of 2ton/ha, 4ton/ha, 6ton/ha, 10ton/ha. Freundlich isothermal adsorption equations obtained from experiment with sewage sludge cake were as follows (on condition that the level of TCE applied to soil ranged from 0.5ng/g soil to 2.5 ng/g soil.) : S1 :x/m = 0.393 $C^2$, S2 : x/m = 0.436 $C^2$, S3 : x/m = 0.636 $C^2$Value of k was increased in higher order of 51, 52, 53 with increased level of sewage sludge cake application. From this results, soil which was applied higher level of sewage sludge cake had a good ability on TCE adsorption. With increased the level of lime application, pH of the soil was increased and the ability of the soil in TCE adsorption was decreased.

  • PDF

A Fundamental Study on the Adsorption Capacity of Heavy Metals by Earthworms Cast (지렁이 분변토의 중금속흡착능에 관한 기초연구)

  • Son, Hee-Jeong;Kim, Hyeong-Seok;Song, Young-Chae;Sung, Nak-Chang;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1996
  • The purpose of this study is the evaluation of adsorption capacity of casts for heavy metals comparing with the activated carbon. The casts was obtained from vermicomposting of the mixed organic sludges which were generated from the treatment facilities for leather wastewater and cattle wastewater. The physico-chemical characteristics of cast was investigated. Also, the batch adsorption experiments of cast and activated carbon for heavy metals were carried out, and the results were analyzed by Freundlich isotherm. The buffering capacity to the acidic wastewater was founded in the cast, and the cation exchange capacity of cast impling adsorption capacity for soluble substances was evaluated as about 55me/100g. Those were implied that the cast have a large potential as a good adsorbent for soluble pollutants in wastewater. From the results of batch experiments, the removal efficiencies of tested various heavy metals including Pb, Cu, Cd, and Cr were very high value as 89-98% for the activated car-bon, and 80~95% for the casts except for Zn. The adsorption equilibriums for the two materials were achieved within 90 minutes. The order of preferable metals in the adsorption was found to be Pb>Cu>Cd>Cr>Zn on the cast and to be Pb>Cd>Cu>Cr>Zn on the activated carbon, respectively. From the above results, it might be con-cluded that cast is effectively available as a good adsorbent to treating the heavy metal bearing wastewater.

  • PDF

Adsorption-Desorption, Leaching, and Degradation Pattern of Fungicide Fluazinam in the Soil Environment (살균제 Fluazinam의 토양환경 중 흡.탈착, 용탈 및 분해양상)

  • Hu, Won;Lee, Seog-June;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.128-133
    • /
    • 1997
  • This study was conducted to evaluate the adsorption, desorption, leaching and degradation pattern of fungicide fluazinam in the soil environment under the laboratory conditions. The mode of isothermal adsorption of fluazinam in soil was coincident with the Freundlich equation. The adsorption amount of fluazinam was much higher on soils containing organic matter than on soils oxidized with hydrogen peroxide. The presence of organic matter, humic acid or fulvic acid, increased the adsorption amount of fluazinam on soils. The Freundlich constant K was much higher in soil added with humic acid than in soil added with fulvic acid. The desorption ratio of fluazinam adsorbed to soil was increased by removal of organic matter. In leaching experiment using soil column, the fluazinam applied on the soil surface was not moved down to the bottom of soil and was not detected in leachate water. The degradation of fluazinam was faster in Soil I with rich organic matter than Soil II with poor organic matter, in non-sterilized soil than sterilized soil, and in flooded soil than unflooded soil.

  • PDF

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

Pure and Binary Gases Adsorption Equilibria of CO2/CO/CH4/H2 on Li-X Zeolite (Li-X 제올라이트에서의 CO2/CO/CH4/H2 단일성분 및 혼합성분의 흡착평형)

  • Park, Ju-Yong;Yang, Se-il;Choi, Do-Young;Jang, Seong-Cheol;Lee, Chang-Ha;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • Adsorption equilibria of the gases $CO_2$, CO, $CH_4$ and $H_2$ and their binary mixtures on Li-X zeolite (UOP) were obtained by static volumetric method in the pressure range of 0 to 20 bar at temperatures of 293.15, 303.15, and 313.15 K. Using the parameter obtained from single-component adsorption isotherm. Multicomponent adsorption equilibra could be predicted and compared with experimental data. Extended Langmuir isotherm, Extended Langmuir-Freundlich isotherm (L-F) and dual-site Langmuir isotherm (DSL) were used to predict the experimental results for binary adsorption equilibria of $H_2/CO_2$, $H_2/CO$, and $H_2/CH_4$ on Li-X Zeolite. Extended Langmuir-Freundlich isotherm predicted equilibria of $CH_4$ and $H_2$ better than any other isotherm. One the other hand DSL isotherm predicted equilibria of $CO_2$ and CO very well.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

A study on the adsorption characteristic and safety assessment of railway subsoil material (철도 노반 재료의 중금속 흡착특성과 안전성에 관한 연구)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.146-154
    • /
    • 2015
  • Domestic railway industry has grown in numbers, scale of railway ndustrial and operation because was focused on an environmentally sustainable transportation. However, it is not enough to treat and prevent heavy metals which occur as the railway operation increases. The heavy metals occurred when the operating railway and it will be flow into water system with rainfall effluent during rainfall. will flow out along with the rainfall effluent when rainfall comes. In case of a railway bridge, In particular, heavy metals were flow into the water system without any treatment from railway bridges where located nearby rivers and lakes. So, rainfall effluent from railway facilities was occurred pollution of water system. For the prevent of heavy metal runoff during rainfall, the adsorptivity of material in railway roadbed is important.In this study, adsorptivity of gravel which is main gravel and blast-furnace slag were conducted adsorption test and deducted Freundlich's and Langmuir's isothermal adsorption equations. Safety as railway subbase course material was evaluated using modeling. As a result, absorption amount of slag, Cd and Cu, was shown higher than gravel and Pb along with Zn showed higher absorption amount of gravel. However, absorption amount of slag was shown higher than gravel used as railway subbase course material as time passes by. Absorption features had more suitable determination coefficient of heavy metals in warm absorption type such as Langnmuir compared to warm absorption type like Freundlich. To add, they showed less transformation by about 10% compared to gravel in safety evaluation through modeling. This is a railway subbase course material that prevents water outflow of heavy metal thus we can know slag is needed to be used.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.