• Title/Summary/Keyword: Fresh concrete

Search Result 664, Processing Time 0.025 seconds

Effects of Temperature and Binder Components on Working Life of Fresh MMA Modified UP Polymer Concrete (굳지 않은 MMA개질 UP 폴리머 콘크리트의 사용가능시간에 미치는 온도와 결합재의 영향)

  • Yeon, Jung-Heum;Hyun, Sang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.51-61
    • /
    • 2012
  • PURPOSES : This study deals with the working life of polymer concrete, which is typically used as a repair or overlay material for portland cement concrete pavements. METHODS : In the scope of this study, laboratory testing was conducted on fresh MMA modified UP polymer concrete, which uses an MMA monomer for viscosity adjustment and strength improvement of UP resin. The experimental variables were temperature (-20 to $+20^{\circ}C$) and binder components (MMA, MEKPO, and DMA). RESULTS : The result showed that the optimum binder ratios for polymer concrete production were 12, 11, and 10 wt.% when the MMA contents were 20, 30, and 40 wt.%, respectively. The working life of polymer concrete depending on temperature and binder components could be expressed by a logarithmic functional formula. The coefficient of variation for each binder component was the highest for DMA content while the lowest for MEKPO content. Also, the contents of each binder component for ensuring the working life of 60 minutes were proposed. CONCLUSIONS : Ultimately, the present study derived a linear regression equation estimating 60 minutes working life based on the setting times of each binder component.

Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study aimed at exploring the effect of presoaking degree of lightweight aggregate (LWA) on the fresh and hardened properties of concrete. Two series (i.e., Series A and Series B) of concrete mixes that were made of LWA with different moisture states were prepared. The presoaking degree of LWA was divided into three types: oven dry state, 1 hour prewetted and 24 hours prewetted. For the Series A, the water content of the lightweight aggregate concrete (LWAC) mixes was adjusted in accordance with the moisture condition of the LWA. Whereas the amount of water added in the Series B mixes was deliberately not adjusted for the moisture condition of the LWA. Slump test, mechanical tests, interfacial transition zone microscopical tests and thermal conductivity test were carried out on the specimens of different concretes and compared with control normal-weight aggregate concretes. The test results showed that the effect of mixing water absorption by LWA with different moisture states was reflected in the fresh concrete as the loss of mixture workability, while in the hardened concrete as the increase of its strength. With the use of oven-dried LWA, the effect of reduction of water-cement ratio was more significant, and thus the microstructure of the ITZ was more compact.

Improving the brittle behaviour of high-strength concrete using keratin and glass fibres

  • Abdelsamie, Khaled;Agwa, Ibrahim Saad;Tayeh, Bassam A.;Hafez, Radwa Defalla Abdel
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.469-477
    • /
    • 2021
  • Keratin fibres are waste products of the poultry industry. Natural materials made from chicken feather fibres (CFFs) are used in concrete-reinforced composites in this study. Brittleness is a major problem of high-strength concrete (HSC) that leads to sudden failure at the ultimate capacity of concrete. Hence, this work aims to investigate effects of using CFFs on improving the brittle behaviour of HSC. Two scenarios are performed to analyse the effectiveness of using CFFs. HSC containing different ratios of CFF (0% as the control, 0.5%, 1%, 1.5%, 2%, and 3%) by volume are tested in the first scenario. Glass fibres (GF) are used to replace CFFs in the other scenario. Tests of fresh, hardened and morphological properties for concrete are performed. Results showed the enhanced brittle behaviour of HSC when using both types of fibres. The preferable ratio of both types of fibres is 1% by volume. Flexural and splitting tensile strengths increased by about 44.9 % and 42.65 % for mixes containing 0.1% GF, respectively. While they were increased by about 21.6 % and 21.16 % for mixes containing 0.1% CFF, respectively.

An Experimental Study on The Application of Construction of Recycled Aggregate Concrete (재생골재 콘크리트의 구조체 적용성에 관한 실험적 연구)

  • 이상수;최민수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.6-11
    • /
    • 1993
  • Due to depleting reserves and environmental pressures, the availability of "good" aggregates, , particularly in many urban areas, has decreased in recent years and from the viewpoint of energy and resources saving, it may be very advantageous to use waste concrete as construction materials. Therefore, this paper, an experimental study on the application in the construction of recycled aggregate concrete, is the experimental program and properties of fresh concrete to investigate general performance and workability of concretef concrete

  • PDF

A Study on the Characteristics of Antiwashout Underwater Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그미분말을 혼입한 수중불분리콘크리트의 특성에 관한 연구)

  • 이상명;최홍윤;이환우;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-98
    • /
    • 1999
  • Recently, the use of the underwater concrete constructions with the antiwashout underwater concrete is increasing. In this study, we investigate the properties of pH, suspended solids, slump flow, box test, air contents of fresh antiwashout underwater concrete and the Unit weight, compressive strength of hardened antiwashout underwater concrete which Ground Granulated Blast Furnace Slag contents 0%, 10%, 20%, 30%, 50%, 60% at 7days and 28days age which is produced and cured in the water and sea water. As a result, Ground Granulated Blast Furnace Slag contents 30% was excellent.

  • PDF

Field test of high-performance concrete (고성능 콘크리트 현장 시험시공)

  • 신동수;노재호;박연동;권영호;한정호;조일호;백명종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.171-176
    • /
    • 1995
  • In recent years, Hith Performance Concrete has attracted world wide attention for its workability, strength and long-term durability. A field test was conducted to confirm the properties of high performance Concrete in situconditions. This paper describes the concrete materials, mix proportions, fresh state properties, some aspects of placability and qualty control results for field test. From the result, it was found that it is possible to produce High Performance Concrete with self-compactable and high strength.

  • PDF

The effect of curing conditions on the cracking properties of flyash concrete (양생조건에 따른 플라이애쉬 콘크리트 균열특성에 미치는 영향)

  • Park, Jong-Hwa;Lee, Man-Ik;Nam, Jae-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.825-828
    • /
    • 2006
  • In this paper, experimental studies are performed to find out properties of crack according to the change of curing conditions of flyash concrete. To study the effect of curing conditions on flyash concrete, slump, bleeding, air content and hydration temperature of fresh concrete are measured according to various curing conditions. In addition, the effect of caring conditions on compressive strength, tensile strength and Plastic drying shrinkage cracking of hardened concrete is also considered.

  • PDF