• 제목/요약/키워드: Frequent output short circuits

검색결과 2건 처리시간 0.015초

부하단락이 빈번히 발생하는 경우에 적합한 교류-직류 전력변환기 (A New Ac-to-Dc Power Converter for a Load with Frequent Short Circuits)

  • 노의철;김인동
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.384-390
    • /
    • 1999
  • This paper describes a new ac-to-dc power converter using a multilevel converter. A conventional multilevel ac-to-dc converter has large output dc filter capacitors. When a short circuit happens in a load, the stored energy in the capacitors should be discharged through the load with a high short circuit current. The high current may cause considerable damage to the capacitors and the load. The output dc capacitors of the proposed converter do not discharge even under load short circuit condition. In the case of a load short circuit, the capacitors become a floating state immediately and remain in the state. Then the stored capacitor energy is supplied to the load again as soon as the short circuit has been cleared. Therefore, the rising time of the load voltage can be significantly reduced. This feature satisfies the requirement of a power supply for a load with frequent short circuits. The proposed converter has the characteristics of a simplified structure, a reduced cost, weight, and volume compared with conventional power supplies with frequent output short circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF