• 제목/요약/키워드: Frequent Pattern

검색결과 612건 처리시간 0.024초

대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가 (Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining)

  • 이강인;윤은일
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.77-83
    • /
    • 2015
  • 데이터 마이닝에서 활발히 연구되고 있는 주요 분야들 가운데 하나인 빈발 패턴 마이닝은 대규모의 데이터 집합 또는 데이터베이스로부터 숨겨진 유용한 패턴 정보를 추출하기 위한 방법이다. 또한 이 기법으로 얻을 수 있는 결과물을 통해 데이터베이스내의 다양하고 중요한 특징들을 더욱 손쉽게 자동적으로 분석할 수 있기 때문에 많은 응용영역에도 활발히 적용되고 있다. 하지만 이러한 데이터베이스로부터 단순히 사용자에 의해 설정된 최소 지지도 임계값만을 가지고 이를 만족하는 모든 패턴들을 추출하는 기존의 전통적인 빈발 패턴 마이닝 방식은 데이터베이스의 특성과 임계값 설정의 정도에 따라 극도로 많은 수의 결과 패턴을 생성하는 문제를 가지며, 이에 따른 시간 및 공간 자원의 낭비를 초래한다. 또한 과도하게 생성된 패턴에 대한 분석의 어려움 역시 심각한 문제가 된다. 기존의 빈발 패턴 마이닝 접근방법들이 직면한 이러한 문제를 해결하고자, 데이터베이스로부터 가능한 모든 빈발 패턴들을 마이닝하는 것이 아닌, 이들에 대한 대표 패턴들만은 선별적으로 추출할 수 있도록 하는 대표 패턴 마이닝의 개념과 다양한 관련 기법들이 제안되었다. 본 논문에서는 생성되는 각 패턴의 최대성 또는 폐쇄성을 고려하는 패턴 압축 기법들에 대한 특성들을 기술하고, 이에대한 비교 및 분석을 진행한다. 최대 빈발 패턴 혹은 닫힌 빈발 패턴들을 마이닝함으로써, 효과적인 패턴 압축이 가능하며, 더 적은 시공간 자원으로 마이닝 작업을 수행할 수 있다. 또한 압축된 패턴들은 필요시 다시 원래의 패턴 형태로 복구가 가능한 특징이 있으며, 특히 닫힌 패턴 접근 방법을 이용하면 패턴을 압축하고 다시 해제하는 과정에서 어떠한 정보의 손실도 일어나지 않는다. 본 논문에서는 같은 플랫폼 상에서 동일한 구현 수준의 알고리즘에 대해 실세계로부터 축적된 실 데이터셋들을 가지고 상기 기법들에 대한 성능평가를 진행함으로써, 각 기법이 패턴 생성, 수행 시간, 메모리 사용량과 같은 실제적인 마이닝 성능에 대해 어떠한 영향을 미치는지에 대한 심층적 분석결과를 보인다.

PPFP(Push and Pop Frequent Pattern Mining): 빅데이터 패턴 분석을 위한 새로운 빈발 패턴 마이닝 방법 (PPFP(Push and Pop Frequent Pattern Mining): A Novel Frequent Pattern Mining Method for Bigdata Frequent Pattern Mining)

  • 이정훈;민연아
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권12호
    • /
    • pp.623-634
    • /
    • 2016
  • 현존하는 빈발 패턴 마이닝 방법은 대부분 시간 효율성을 목표로 하고, 물리적 메모리 사용에 매우 의존적이다. 하지만 빅데이터 시대가 도래함에 따라 실제 세상의 데이터베이스는 급속도로 증가하고 있으며, 그에 따라 기존의 방법으로 현실적인 거대한 양의 데이터를 마이닝하기에 물리적 메모리 공간이 부족한 실정이다. 이러한 문제를 해결하기 위해, 빈발 패턴 마이닝의 메모리 의존성을 줄이기 위한 보조저장장치 기반의 연구들이 진행되었으나, 메모리 기반의 방법들에 비해 처리 시간이 너무 많이 소비된다는 한계가 있었다. 따라서 확장성을 가지며, 기존의 디스크 기반의 방법들에 비해 시간효율성을 높인 새로운 빈발 패턴 마이닝이 필요하게 되었다. 본 논문에서는 빅데이터로부터 빈도 아이템 집합들을 마이닝하기 위해 메모리와 디스크를 함께 사용하는 스택 기반의 새로운 접근법인 PPFP 알고리즘을 제안하였다. PPFP는 빈발 패턴 마이닝 접근법 중 가장 인기 있고 효율적인 접근법 중 하나인 FP-growth를 기반으로 하고 있다. PPFP 마이닝 방법은 다음과 같이 두 단계로 진행된다. (1) IFP-tree 구축: FP-tree를 생성한 후, 새로운 인덱스 번호 부여 방법으로 FP-tree의 각 노드에 인덱스 번호를 부여하고, 이 인덱스 번호가 부여된 FP-tree(IFP-tree)를 테이블로 변환하여(IFP-table) 디스크에 저장한다. (2) PPFP 알고리즘을 이용한 빈발 패턴 마이닝: 스택 기반의 PUSH-POP 방식으로 패턴을 확장시켜 나가며 빈발 패턴을 마이닝한다. 이러한 방식을 통해 메모리 기반의 방법에 비해 반복적으로 많은 시간이 소모되는 연산에 매우 적은 양의 메모리를 활용하여 확장성과 함께 시간효율성 또한 향상시킬 수 있었다. 그리고 기존의 연구 방법들과 비교 실험을 통해 새로운 알고리즘의 성능을 증명하였다.

효율적인 닫힌 빈발 시퀀스 마이닝 (An Efficient Mining for Closed Frequent Sequences)

  • 김형근;황환규
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.163-173
    • /
    • 2005
  • Recent sequential pattern mining algorithms mine all of the frequent sequences satisfying a minimum support threshold in a large database. However, when a frequent sequence becomes very long, such mining will generate an explosive number of frequent sequence, which is prohibitively expensive in time. In this paper, we proposed a novel sequential pattern algorithm using only closed frequent sequences which are small subset of very large frequent sequences. Our algorithm extends the sequence by depth-first search strategy with effective pruning. Using bitmap representation of underlying databases, we can obtain a closed frequent sequence considerably faster than the currently reported methods.

  • PDF

Prefix-트리를 이용한 동적 가중치 빈발 패턴 탐색 기법 (Efficient Dynamic Weighted Frequent Pattern Mining by using a Prefix-Tree)

  • 정병수
    • 정보처리학회논문지D
    • /
    • 제17D권4호
    • /
    • pp.253-258
    • /
    • 2010
  • 지금까지의 빈발 패턴(Frequent Pattern) 마이닝에서는 각 항목들의 중요도(Weight)는 모든 같은 값으로 다루어 왔으나 실 환경에서는 각 항목들의 중요도가 다르게 적용되는 경우가 많이 있고 또 같은 항목이라도 시간에 따라 다른 중요도 값으로 다루어져야 할 경우가 있다. 비즈니스 데이터 분석 환경이나 웹 클릭 데이터 분석 환경과 같은 응용에서도 동적으로 변하는 중요도를 고려하여야 한다. 지금까지 항목의 중요도를 고려하는 여러 패턴 마이닝 기법들이 제안되고 있으나 동적으로 변하는 항목의 중요도를 고려하는 연구는 발표되지 않고 있다. 본 논문에서는 처음으로 동적인 항목들의 중요도(혹은 가중치)를 고려하는 빈발 패턴 마이닝 알고리즘을 제안한다. 제안하는 기법은 단 한번의 데이터베이스 스캔으로 처리되므로 스트림 데이터를 분석할 수 있다. 여러 실험을 통하여 제안하는 기법은 매우 효과적이며 확장성이 좋은 것임을 보인다.

그래프마이닝을 활용한 빈발 패턴 탐색에 관한 연구 (A Methodology for Searching Frequent Pattern Using Graph-Mining Technique)

  • 홍준석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2019
  • As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.

민감한 빈발 항목집합 숨기기 위한 확장 빈발 패턴 트리 (An Extended Frequent Pattern Tree for Hiding Sensitive Frequent Itemsets)

  • 이단영;안형근;고재진
    • 정보처리학회논문지D
    • /
    • 제18D권3호
    • /
    • pp.169-178
    • /
    • 2011
  • 최근 기업 간 또는 기관 사이의 데이터 공유는 업무 협력을 위해서 필요한 사안이 되고 있다. 이 과정에서 기업이 데이터베이스를 계열회사에 공개했을 때 민감한 정보가 유출되는 문제점이 발행할 수도 있다. 이런 문제를 해결하기 위해서 민감한 정보를 데이터베이스로부터 숨기는 일이 필요하게 되었다. 민감한 정보를 숨기는 이전 연구들은 결과 데이터베이스의 품질을 유지하기 위해 다른 휴리스틱 알고리즘을 적용했다. 그러나 민감한 정보를 숨기는 과정에서 변경되는 항목집합에 대한 영향을 평가하거나 숨겨지는 항목을 최소화하는 연구들은 미흡하였다. 본 논문에서는 민감한 빈발 항목집합을 숨기기 위하여 FP-Tree(Frequent Pattern Tree)기반의 확장 빈발 패턴트리(Extended Frequent Pattern Tree, eFP-Tree)를 제안한다. eFP-Tree의 노드 구성은 기존과는 다르게 빈발 항목집합 생성단계에서 트랜잭션 정보와 민감 정보, 경계 정보를 모두 구성하며, 숨기는 과정에서 비민감한 빈발 항목집합의 영향을 최소화하기 위하여 경계를 사용하였다. 본 논문의 예시 트랜잭션 데이터베이스에 eFP-Tree를 적용한 결과, 손실 항목을 평균 10%이하로 최소화하여 기존 방법들에 비해 효과적임을 증명하였고, 데이터베이스의 품질을 최적으로 유지할 수가 있었다.

심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류 (Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis)

  • 노기용;김원식;이헌규;이상태;류근호
    • 정보처리학회논문지D
    • /
    • 제11D권5호
    • /
    • pp.1031-1040
    • /
    • 2004
  • 심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 진단 결과의 부 정확성으로 인해 심전계에서는 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 심전도 데이터의 수집에서부터 전 처리 과정 그리고 데이터마이닝을 이용한 심장 질환 패턴 분류 기법을 제안한다. 이 패턴 분류기법은 빈발 패턴 베이지안이며 기존의 나이브 베이지안과 빈발 패턴 마이닝의 통합이다. 빈발 패턴 베이지안은 훈련단계에서 탐사된 빈발 패턴들을 사용하여 Product Approximation 구성하므로써 클래스 조건 독립 가정을 가진 나이브 베이지안의 단점을 해결한다.

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

대용량 공간 데이터로 부터 빈발 패턴 마이닝 (Mining Frequent Pattern from Large Spatial Data)

  • 이동규;이경민;정석호;이성호;류근호
    • 한국공간정보시스템학회 논문지
    • /
    • 제12권1호
    • /
    • pp.49-56
    • /
    • 2010
  • 공간 및 비 공간 데이터에서 알지 못했던 패턴을 탐사하는 빈발 패턴 탐사 기법은 마이닝 분야에서 가장 핵심적인 부분으로 많은 연구가 활발히 진행되고 있다. 기존의 자료구조들은 트리 구조 및 배열 구조로써 밀집 또는 희소 빈발 패턴에서 성능 저하를 보인다. 대용량의 공간 데이터는 밀집 및 희소 빈발 패턴을 둘 다 가지므로 단일 알고리즘으로 빠르게 탐사 하는 것은 중요하다. 본 논문에서는 단일 알고리즘을 사용하면서도 밀집 및 희소 빈발 패턴 모두에 대해 빠르게 빈발 패턴을 마이닝할 수 있는 압축된 패트리샤 빈발 패턴 트리라는 새로운 자료구조와 이를 사용한 빈발 패턴 마이닝 알고리즘을 제안한다. 실험 평가는 제안한 알고리즘이 대용량 희소 및 밀집 빈발 데이터에서 기존의 FP-Growth 알고리즘 보다 약 10배 정도 빠르게 빈발 패턴을 탐사하는 것을 보인다.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF