• Title/Summary/Keyword: Frequent Pattern

Search Result 612, Processing Time 0.024 seconds

Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining (대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가)

  • Lee, Gang-In;Yun, Un-Il
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Frequent pattern mining, which is one of the major areas actively studied in data mining, is a method for extracting useful pattern information hidden from large data sets or databases. Moreover, frequent pattern mining approaches have been actively employed in a variety of application fields because the results obtained from them can allow us to analyze various, important characteristics within databases more easily and automatically. However, traditional frequent pattern mining methods, which simply extract all of the possible frequent patterns such that each of their support values is not smaller than a user-given minimum support threshold, have the following problems. First, traditional approaches have to generate a numerous number of patterns according to the features of a given database and the degree of threshold settings, and the number can also increase in geometrical progression. In addition, such works also cause waste of runtime and memory resources. Furthermore, the pattern results excessively generated from the methods also lead to troubles of pattern analysis for the mining results. In order to solve such issues of previous traditional frequent pattern mining approaches, the concept of representative pattern mining and its various related works have been proposed. In contrast to the traditional ones that find all the possible frequent patterns from databases, representative pattern mining approaches selectively extract a smaller number of patterns that represent general frequent patterns. In this paper, we describe details and characteristics of pattern condensing techniques that consider the maximality or closure property of generated frequent patterns, and conduct comparison and analysis for the techniques. Given a frequent pattern, satisfying the maximality for the pattern signifies that all of the possible super sets of the pattern must have smaller support values than a user-specific minimum support threshold; meanwhile, satisfying the closure property for the pattern means that there is no superset of which the support is equal to that of the pattern with respect to all the possible super sets. By mining maximal frequent patterns or closed frequent ones, we can achieve effective pattern compression and also perform mining operations with much smaller time and space resources. In addition, compressed patterns can be converted into the original frequent pattern forms again if necessary; especially, the closed frequent pattern notation has the ability to convert representative patterns into the original ones again without any information loss. That is, we can obtain a complete set of original frequent patterns from closed frequent ones. Although the maximal frequent pattern notation does not guarantee a complete recovery rate in the process of pattern conversion, it has an advantage that can extract a smaller number of representative patterns more quickly compared to the closed frequent pattern notation. In this paper, we show the performance results and characteristics of the aforementioned techniques in terms of pattern generation, runtime, and memory usage by conducting performance evaluation with respect to various real data sets collected from the real world. For more exact comparison, we also employ the algorithms implementing these techniques on the same platform and Implementation level.

PPFP(Push and Pop Frequent Pattern Mining): A Novel Frequent Pattern Mining Method for Bigdata Frequent Pattern Mining (PPFP(Push and Pop Frequent Pattern Mining): 빅데이터 패턴 분석을 위한 새로운 빈발 패턴 마이닝 방법)

  • Lee, Jung-Hun;Min, Youn-A
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.623-634
    • /
    • 2016
  • Most of existing frequent pattern mining methods address time efficiency and greatly rely on the primary memory. However, in the era of big data, the size of real-world databases to mined is exponentially increasing, and hence the primary memory is not sufficient enough to mine for frequent patterns from large real-world data sets. To solve this problem, there are some researches for frequent pattern mining method based on disk, but the processing time compared to the memory based methods took very time consuming. There are some researches to improve scalability of frequent pattern mining, but their processes are very time consuming compare to the memory based methods. In this paper, we present PPFP as a novel disk-based approach for mining frequent itemset from big data; and hence we reduced the main memory size bottleneck. PPFP algorithm is based on FP-growth method which is one of the most popular and efficient frequent pattern mining approaches. The mining with PPFP consists of two setps. (1) Constructing an IFP-tree: After construct FP-tree, we assign index number for each node in FP-tree with novel index numbering method, and then insert the indexed FP-tree (IFP-tree) into disk as IFP-table. (2) Mining frequent patterns with PPFP: Mine frequent patterns by expending patterns using stack based PUSH-POP method (PPFP method). Through this new approach, by using a very small amount of memory for recursive and time consuming operation in mining process, we improved the scalability and time efficiency of the frequent pattern mining. And the reported test results demonstrate them.

An Efficient Mining for Closed Frequent Sequences (효율적인 닫힌 빈발 시퀀스 마이닝)

  • Kim, Hyung-Geun;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.163-173
    • /
    • 2005
  • Recent sequential pattern mining algorithms mine all of the frequent sequences satisfying a minimum support threshold in a large database. However, when a frequent sequence becomes very long, such mining will generate an explosive number of frequent sequence, which is prohibitively expensive in time. In this paper, we proposed a novel sequential pattern algorithm using only closed frequent sequences which are small subset of very large frequent sequences. Our algorithm extends the sequence by depth-first search strategy with effective pruning. Using bitmap representation of underlying databases, we can obtain a closed frequent sequence considerably faster than the currently reported methods.

  • PDF

Efficient Dynamic Weighted Frequent Pattern Mining by using a Prefix-Tree (Prefix-트리를 이용한 동적 가중치 빈발 패턴 탐색 기법)

  • Jeong, Byeong-Soo;Farhan, Ahmed
    • The KIPS Transactions:PartD
    • /
    • v.17D no.4
    • /
    • pp.253-258
    • /
    • 2010
  • Traditional frequent pattern mining considers equal profit/weight value of every item. Weighted Frequent Pattern (WFP) mining becomes an important research issue in data mining and knowledge discovery by considering different weights for different items. Existing algorithms in this area are based on fixed weight. But in our real world scenarios the price/weight/importance of a pattern may vary frequently due to some unavoidable situations. Tracking these dynamic changes is very necessary in different application area such as retail market basket data analysis and web click stream management. In this paper, we propose a novel concept of dynamic weight and an algorithm DWFPM (dynamic weighted frequent pattern mining). Our algorithm can handle the situation where price/weight of a pattern may vary dynamically. It scans the database exactly once and also eligible for real time data processing. To our knowledge, this is the first research work to mine weighted frequent patterns using dynamic weights. Extensive performance analyses show that our algorithm is very efficient and scalable for WFP mining using dynamic weights.

A Methodology for Searching Frequent Pattern Using Graph-Mining Technique (그래프마이닝을 활용한 빈발 패턴 탐색에 관한 연구)

  • Hong, June Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.

An Extended Frequent Pattern Tree for Hiding Sensitive Frequent Itemsets (민감한 빈발 항목집합 숨기기 위한 확장 빈발 패턴 트리)

  • Lee, Dan-Young;An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.169-178
    • /
    • 2011
  • Recently, data sharing between enterprises or organizations is required matter for task cooperation. In this process, when the enterprise opens its database to the affiliates, it can be occurred to problem leaked sensitive information. To resolve this problem it is needed to hide sensitive information from the database. Previous research hiding sensitive information applied different heuristic algorithms to maintain quality of the database. But there have been few studies analyzing the effects on the items modified during the hiding process and trying to minimize the hided items. This paper suggests eFP-Tree(Extended Frequent Pattern Tree) based FP-Tree(Frequent Pattern Tree) to hide sensitive frequent itemsets. Node formation of eFP-Tree uses border to minimize impacts of non sensitive frequent itemsets in hiding process, by organizing all transaction, sensitive and border information differently to before. As a result to apply eFP-Tree to the example transaction database, the lost items were less than 10%, proving it is more effective than the existing algorithm and maintain the quality of database to the optimal.

Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis (심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류)

  • Noh, Gi-Yeong;Kim, Wuon-Shik;Lee, Hun-Gyu;Lee, Sang-Tae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1031-1040
    • /
    • 2004
  • Electrocardiogram being the recording of the heart's electrical activity provides valuable clinical information about heart's status. Many re-searches have been pursued for heart disease diagnosis using ECG so far. However, electrocardio-graph uses foreign diagnosis algorithm due to inaccuracy of diagnosis results for a heart disease. This paper suggests ECG data collection, data preprocessing and heart disease pattern classification using data mining. This classification technique is the FB(Frequent pattern Bayesian) classifier and is a combination of two data mining problems, naive bayesian and frequent pattern mining. FB uses Product Approximation construction that uses the discovered frequent patterns. Therefore, this method overcomes weakness of naive bayesian which makes the assumption of class conditional independence.

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

Mining Frequent Pattern from Large Spatial Data (대용량 공간 데이터로 부터 빈발 패턴 마이닝)

  • Lee, Dong-Gyu;Yi, Gyeong-Min;Jung, Suk-Ho;Lee, Seong-Ho;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Many researches of frequent pattern mining technique for detecting unknown patterns on spatial data have studied actively. Existing data structures have classified into tree-structure and array-structure, and those structures show the weakness of performance on dense or sparse data. Since spatial data have obtained the characteristics of dense and sparse patterns, it is important for us to mine quickly dense and sparse patterns using only single algorithm. In this paper, we propose novel data structure as compressed patricia frequent pattern tree and frequent pattern mining algorithm based on proposed data structure which can detect frequent patterns quickly in terms of both dense and sparse frequent patterns mining. In our experimental result, proposed algorithm proves about 10 times faster than existing FP-Growth algorithm on both dense and sparse data.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF