• 제목/요약/키워드: Frequent Itemse

검색결과 1건 처리시간 0.016초

희소 데이터 집합에서 효율적인 빈발 항목집합 탐사 기법 (Efficient Mining of Frequent Itemsets in a Sparse Data Set)

  • 박인창;장중혁;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권6호
    • /
    • pp.817-828
    • /
    • 2005
  • 빈발 항목집합 마이닝 분야의 주된 연구 주제는 수행과정에서의 메모리 사용량을 줄이고 짧은 수행 시간에 마이닝 결과 집합을 얻는 것으로서, 빈발항목 탐색을 위한 다수의 방법들은 Apriori 알고리즘에 기반을 둔 다중 탐색 방법들이다. 또한 최대 빈발 패턴의 길이가 길어질수록 마이닝 수행 시간이 급격히 증가되는 단점을 가진다. 이를 극복하기 위해서 이전의 연구에서 마이닝 수행 시간을 단축하기 위한 다양한 방법들이 제안되었다. 하지만, 다수의 이들 방법들은 희소 데이터 집합에서는 다소 비효율적인 성능을 나타낸다. 본 논문에서도 효율적인 빈발항목 탐색 방법을 제안하였다. 먼저 빈발항목 탐색을 위한 새로운 트리 구조인 $L_2$-tree 구조를 제안하였으며, 더불어 $L_2$-tree를 이용하여 빈발 항목집합을 탐색하는 $L_2$-traverse 알고리즘을 제안하였다. $L_2$-traverse 구조는 길이가 2인 빈발 항목집합 $L_2$에 기반하여 생성되는 것으로서 크기가 매우 작으며, 이를 활용한 $L_2$-traverse 알고리즘은 $L_2$-tree를 단순히 한번 탐색함으로써 전체 빈발 항목집합을 빠른 시간에 구한다. 또한 수행 시간을 보다 단축할 수 있는 방법으로 길이가 3인 빈발 항목집합 $L_3$가 될 수 없는 $L_2$ 패턴들을 미리 제거하는 $C_3$-traverse 알고리즘도 제안하였다. 다양한 실험을 통해 제안된 방법들은 특히 $L_2$가 상대적으로 적은 희소 데이터 집합 환경일 때 기존의 다른 방법들보다 우수함을 검증하였다.