• Title/Summary/Keyword: Frequency tuning

검색결과 693건 처리시간 0.028초

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • 제10권6호
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제15권3호
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Experimental Examination of Multivariable PID Controller Design on Frequency Domain using Liquid Level Process

  • Eguchi, Kazuki;Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.786-791
    • /
    • 2005
  • This paper is concerned with the examination and evaluation concerning a tuning method of multivariable PID controllers based on partial model matching on frequency domain proposed by authors from practical view point. In this case, PID controller parameters are determined by minimizing the loss function defined by the difference between frequency response of ideal model transfer function and actual frequency response on several frequency points. The purpose of the paper is to examine and evaluate the performance of the method through actual experiments of MIMO liquid level experimental process control equipment.

  • PDF

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Design and Fabrication of a X-band Voltage Control Dielectric Resonator Oscillator with The Low Phase Noise (낮은 위상잡음을 갖는 X-band 전압제어 유전체 공진형 발진기의 설계 및 제작)

  • 박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제41권5호
    • /
    • pp.69-76
    • /
    • 2004
  • In this paper, a VCDRO (Voltage Control Dielectric Resonator Oscillator) with low phase noise for X-band application has been designed and fabricated. A low noise and low flicker noise MESFET and a high Q dielectric resonator were selected to obtain good phase noise Performance. Also, a varactor diode having high Q, qualify factor was used to reduce the loading effects and a big Gamma of diode was chosen for linearity of frequency over voltage tuning range. The fabricated circuits was simulated with circuit design tools, ADS to provide the optimum performances. As the measured results of fabricated oscillator, the output power was 5.8 ㏈m at center frequency 12.05㎓ and harmonic suppression -30㏈c, phase noise -114 ㏈c at 100 KHz offset frequency, respectively, and the frequency tuning range as the function of valtage applied to varactor diode was 15.2 MHz and its power variation with frequency was 0.2 ㏈. This oscillator could be available to a local oscillator in X-band.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Control of the Resonance Frequency of a Piezoelectric Transducer with Two Pair of Electodes - (어종식별을 위한 광대역 초음파 변환기의 설계 -I - 전극분할형 압전진동자의 주파수특성 제어 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제33권3호
    • /
    • pp.183-188
    • /
    • 1997
  • A method for designing a broadband transducer was investigated experimentally. Control of the resonance frequency of a Piezoelectric circular transducer with two pairs of electrodes was achieved by varying the inductance of external coil connected across the terminal of one pair of electrodes of transducer. The conductance curves of transducer in water were obtained as a function of the inductance value in mH of the coil used in the tuning. As the tuning inductance is increased in value, the resonance frequency is reduced toward the fundamental frequency of 50 kHz. This interesting result suggest that it is possible to produce a continuously tunable transducer covering a frequency range between 61.3 kHz and 121.7 kHz by varying the inductance value of external coil from 2.7 mH to 15.0 mH. One of other problems in the design and construction of such broadband transducer is the transducer efficiency, but this will be the subject of our future work.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

The test research of gasoline tuning for the decrease of a knocking (가솔린 엔진의 노킹 감소를 위한 엔진 튜닝 시험 연구)

  • Yang, Hyun-Soo;Chun, Dong-Jun;Lee, An-Sok
    • Journal of the Korea Safety Management & Science
    • /
    • 제9권2호
    • /
    • pp.183-194
    • /
    • 2007
  • 1. Through this experiment, we made certain that the best distinguished frequency area of the Hyundae Beta 2.0 engine's knocking is 6.8khz. 2. Through the experiment, we checked the output power voltage condition of the logging output with the generation of a engine knocking. And wechecked up that it generated maximumly up to 11.4 V which depends on the degree of the streng.

Development of High frequency Multi-layered Ceramic Chip Inductor (고주파 적층형 칩 인덕터 개발)

  • 강남기;임욱;유찬세
    • Proceedings of the KAIS Fall Conference
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.148-150
    • /
    • 2001
  • 본 논문에서는 소결 후 20 ㎛ 정도의 두께를 갖는 ceramic green sheet를 이용하여 초소형(1005) 칩 인덕터를 제작하였다. 인덕터의 패턴을 최적화함에 있어서 HP사의 HFSS(High Frequency Structure Simulator)를 이용하였고 이 과정에서 인덕터의 전기적 특성, 등가회로등을 추출하였다. 칩 인덕터를 제작함에 있어서 모든 적층 공정을 최적화하였다. 실제 제작한 인덕터와 simulation 결과의 관계성을 도출하고 이를 통해 목표 용량을 tuning하였다. 이와 같은 과정을 통해 1-39 nH의 인덕턴스를 갖는 1005크기의 칩 인덕터를 개발하였고, 이를 선진사의 제품과 비교할 때 우수한 전기적 특성을 나타내었다.