• Title/Summary/Keyword: Frequency tuning

Search Result 693, Processing Time 0.026 seconds

Design of Broadband CPW-Fed Square Slot Antennas (CPW 급전 광대역 사각 슬롯 안테나 설계)

  • Choi, Soon-Shin;Kim, Joon-Il;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.107-115
    • /
    • 2005
  • This paper presents the structure of a broadband coplanar waveguide(CPW) fed square slot antenna with a impedance bandwidth tuning patch. The designing method of the antenna suggests that two resonant frequencies are excited as a dual-frequency dipole antenna following the dimensions of the square slot. In other words, the lower resonant frequency mainly depends on the slot width and the higher one its length. A CPW fed square slot antenna with a impedance tuning patch was measured to $20GHz^\~33GHz$, $50\%$, VSWR=2 impedance bandwidth by adjusting the dimensions of the tuning patch when the slot length had $70\%$ of its width. This result shows that a medical CPW fed antenna is easily implemented with a simple square slot structure including a bandwidth tuning patch in the center.

Design and Implementation of VCO for Doppler Radar System (도플러 레이더 시스템용 VCO 설계 및 제작)

  • Kim Yong-Hwan;Kim Hyun-Jin;Min Jun-Ki;Yoo Hyung-Soo;Lee Hyung-Kyu;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.81-87
    • /
    • 2005
  • In this paper, a VCDRO(Voltage Control Dielectirc Resonator Oscillator) for signal source of doppler radar system is designed and fabricated. The proposed VCDRO is made with new tuning mechanism using CPW line. The coplanar waveguide of $\lambda_{g}$/2 in length with varactor diode is placed on the metallization side under the dielectric resonator and coupled to it. Tuning varactor diode is mounted at one end of the CPW. The proposed circuit tuned by a CPW allows one more varactor diode to be mounted on the optimized CPW, where a greater sensitivity of frequency tuning is needed. With varying the biasing voltage for the varactor diode from 0 V to 15 V, output frequency tuning of 12 MHz is obtained. The PLDRO exhibits output power of 16.5 dBm with phase noise in the phase locked state characteristic of -115 dBc/Hz at 100 Hz, -105 dBc/Hz at the 10 kHz, and -102 dBc/Hz at 1 Hz offset from 10.525 GHz , respectively.

  • PDF

Optimum Tuning of PID-PD Controller considering Robust Stability and Sensor Noise Insensitivity (센서 잡음 저감도 및 안정-강인성을 고려한 PID-PD 제어기의 최적 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • In this paper, we propose a tuning method of PID-PD controller to satisfy design specifications in frequency domain as well as time domain. The proposed tuning method of PID-PD controller consists of the convex set of PID and PI-PD controller. PID-PD controller controls the closed-loop response to be located between the step responses, and Bode magnitudes of closed-loop transfer functions controlled by PID and PI-PD controller. The controller is designed by the optimum tuning method to minimize the proposed specific cost function subject to sensor noise insensitivity and robust stability. Its effectiveness is examined by the case study and analysis.

A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm (PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구)

  • An, Il Kyun;Huh, Heon;Kim, Hyo-Young;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

On the Minimization of Room Resonance by Room Tuning (룸 튜닝에 의한 실내 공진의 최소화)

  • Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.507-513
    • /
    • 2012
  • The room modes were showed as the peaks and dips on the low frequency response of the loudspeaker, and were one of the biggest obstacles to reproduce the sound. In order to reduce the occurrence of resonance, equalizing is performed at one position, and the frequency response to be equalized is valid only at that position. Performing the equalization would improve the flatness of the frequency response a little, but it cannot eliminate the ringing. Another method is that it is located the speaker at the specific position where the room resonances were not frequently happened. However, there may be the practical limitation that you may not be able to install the speaker at the position to be wanted. One of the practical solutions to decrease the production of resonance in room is the use of bass trap. In this paper, the practical limit for the room tuning using an equalizer and the room optimization will be discussed. The use of bass traps to solve the resonance problem that is always happened in the room is also proposed.

Design of Regulated Low Phase Noise Colpitts VCO for UHF Band Mobile RFID System (UHF 대역 모바일 RFID 시스템에 적합한 저잡음 콜피츠 VCO 설계)

  • Roh, Hyoung-Hwan;Park, Kyong-Tae;Park, Jun-Seok;Cho, Hong-Gu;Kim, Hyoung-Jun;Kim, Yong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.964-969
    • /
    • 2007
  • A regulated low phase noise differential colpitts VCO(Voltage Controlled Oscillator) for mobile RFID system is presented. The differential colpitts VCO meets the dense reader environment specifications. The VCO use a $0.35{\mu}m$ technology and achieves tuning range $1.55{sim}2.053 GHz$. Measuring 910 MHz frequency divider output, phase noise performance is -106 dBcMz and -135dBc/Hz at 40 kHz and 1MHz offset, respectively. 5-bit digital coarse-tuning and accumulation type MOS varactors allow for 28.2% tuning range, which is required to cover the LO frequency range of a UHF Mobile RFID system, Optimum design techniques ensure low VCO gain(<45 MHz/V) for good interoperability with the frequency synthesizer. To the author' knowledge, this differential colpitts VCO achieves a figure of merit(FOM) of 1.93dB at 2-GHz band.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.

Frequency-Tunable Bandpass Filter Design Using Active Inductor (능동 인덕터를 이용한 주파수 가변형 대역통과 필터 설계)

  • Lee, Seok-Jin;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3425-3430
    • /
    • 2013
  • The fast-growing market in wireless communications has led to the development of multi-standard mobile terminals. In this paper, a frequency-tunable active RC bandpass filter for multi-standards wireless communication system is designed using an active inductor. The conventional bandpass filter design methods employ the high order filter or high quality factor Q to improve the stopband attenuation characteristics and frequency selectivity of the passband. The proposed bandpass filter based on the high Q active inductor has an improved frequency characteristics. The center frequency and gain of the designed bandpass filter is tuned by employing the tuning circuit. We have performed the simulation using TSMC $0.18{\mu}m$ process parameter to analyze the characteristics of the designed active RC bandpass filter. The bandpass filter with Q=20.5 has 90MHz half power bandwidth at the center frequency of 1.86GHz. Moreover, the center frequency of the proposed bandpass filter can be tuned between 1.86~2.38GHz for the multi-standards wireless communication system using the capacitor of the tuning circuit.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Complex-Coupled DFB Laser with Self-Pulsation Frequency of THz Region (양 단면 반사율과 위상 조정 영역의 위상이 Self-Pulsation 주파수가 THz 대역인 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Park, Jae-Woo;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.208-218
    • /
    • 2008
  • We investigate the effect in terms of yield of the reflectivity of both facets and of the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers with self-pulsation frequency of the THz region. When the grating phases on both facets of a multisection CC DFB laser are fixed as 0, the variation of SP frequency increases as the reflectivity of both facets increases, while that of SP frequency decreases as the coupling ratio (CR) and the coupling strength increase. For the coupling strength of 3, the range of the phase of a phase tuning section with yields greater than 80% decreases as the CR and the reflectivity of both facets increases. For the coupling strength of 4, the range of the phase of a phase tuning section with yields greater than 80% increases as the CR and the reflectivity of both facets increases.