• Title/Summary/Keyword: Frequency selective surface

Search Result 98, Processing Time 0.023 seconds

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

Compact Spatial Triple-Band-Stop Filter for Cellular/PCS/IMT-2000 Systems

  • Kim, Dong-Ho;Yeo, Jun-Ho;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.735-737
    • /
    • 2008
  • We propose a novel spatial multi-band-stop filter using modified multiple loop array elements to block electromagnetic waves or signals of mobile phones in public facilities. It operates at the following frequency bands: Korean cellular (824 MHz to 894 MHz), Personal Communication Service (PCS) (1.75 GHz to 1.87 GHz), and IMT-2000 (1.92 GHz to 2.17 GHz). Two frequency selective surfaces with modified multiple-loop elements are printed on the top and bottom of a pair-glass pane, which is a pair of glass panes with an air gap between them. A modified multiple-loop element with a meander line is used to make the size of the filter compact. The simulated and measured results show good agreement, which confirms the usefulness of the proposed tri-band spatial filter.

  • PDF

Study on Thermal Residual Stresses and Transmission Characteristics in N-pole Type Frequency Selective Surface Embedded Composite Structures (N-pole 종류의 FSS가 결합된 복합재료 구조의 잔류응력과 전파투과특성)

  • Park, Kyoung Mi;Hwang, In Han;Chun, Heoung Jae;Hong, Ic Pyo;Park, Yong Bae;Kim, Yoon Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In this paper, the delamination and failures in frequency selected surface(FSS) caused by residual stresses in the FSS embedded hybrid composites due to the difference between the coefficients of thermal expansion of components and the transmission characteristic changes due to deformation of FSS patterns by residual stresses were studied. FSS may have different electromagnetic characteristics depending on the type of element, design variables, and arrangement. Design variables of dipole FSS were determined using PSO(Particle Swarm Optimization) to obtain the transmission characteristic for the target resonant frequency. Subsequently, the design variables of other types of N-pole(tripole, cross dipole, and Jerusalem cross) were determined based on the dimensions of the dipole for the comparisons of residual stresses of FSS embedded composite structures and transmission characteristics. In addition, effects of FSS pattern, and stacking sequence of composite laminates were considered.

Design of a Frequency Selective Surface Using DSRRs (DSRR을 이용한 주파수 선택적 표면 설계)

  • Woo, Dae-Woong;Kim, Jae-Hee;Ji, Jeong-Keun;Kim, Gi-Ho;Seong, Won-Mo;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.194-201
    • /
    • 2010
  • We propose a frequency selective surface(FSS) using double split ring resonators(DSRRs) for isolation enhancement between CDMA and RFID. The structure consists of an outer SRR and an inner SRR, and the gaps are formed in the same direction. By properly adjusting the gap and line width, the resonant frequency and skirt characteristics can be adjusted without varying the unit cell size. The proposed structure has a different field distribution from that of an ordinary SRR for magneto-dielectric materials. One layer consists of $9{\times}9$ unit cells and the other layer was separated by 50 mm. To validate the simulation results, we fabricated the patch antenna and the FSSs, and the measured results show a good agreement with the simulated ones. The electrical size of the unit cell is $0.110\;{\lambda}{\times}0.110\;{\lambda}{\times}0.002\;{\lambda}$, and the size of the two layer FSS is $1.058\;{\lambda}{\times}1.058\;{\lambda}{\times}0.153\;{\lambda}$. The two layer FSS maintain gain in CDMA frequency and has 6.9 dB reduced gain in RFID frequency.

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

Design of a 170 GHz Notch Filter for the KSTAR ECE Imaging Sensor Application

  • Mohyuddin, Wahab;Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • A planar, light-weight, and low-cost notch filter structure is required for the KSTAR ECEI (Electron Cyclotron Emission Imaging) system to protect the mixer arrays from spurious plasma heating power. Without protection, this heating power can significantly degrade or damage the performance of the mixer array. To protect mixer arrays, a frequency selective surface (FSS) structure is the suitable choice as a notch filter to reject the spurious heating power. The FSS notch filter should be located between the lenses of the ECEI system. This paper presents a 170 GHz FSS notch filter for the KSTAR ECEI sensor application. The design of such an FSS notch filter is based on the single-sided square loop geometry, because that makes it relatively insensitive to the incident angle of incoming wave. The FSS notch filter exhibits high notch rejection with low pass-band insertion loss over a wide range of incident angles. This paper also reviews the simulated and measured results. The proposed FSS notch filter might be implemented in other millimeter-wave plasma devices.

Design of Transparent Electromagnetic Absorbing Structure using Metal Grid Mesh Printing (Metal Grid Mesh 인쇄를 이용한 투명 전파 흡수구조 설계)

  • Yoon, Sun-Hong;Lee, Jun-Sang;Lee, In-Gon;Hong, Ic-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • In this paper, we designed the transparent circuit analog radar absorbing structure using printed metal grid mesh for enhanced optical transmittance. To obtain wideband electromagnetic absorption and enhanced optical transparency at X-band, we proposed the resistive FSS(Frequency Selective Surface) using printed metal mesh pattern on transparent glass with PEC(Perfect Electric Conductor) plane using ITO(Indium Thin Oxide) coating. We then fabricated the proposed structure to verify the simulation results obtained from commercial EM simulator. The comparisons between the simulation and measured results show good agreements. The results also show that the proposed radar absorbing structure can provide wideband reflection as well as better optical transparency. We can apply this proposed structure to the canopy of stealth aircraft and other stealth and security applications for visible transparency.

Antenna Gain Enhancement Using FSS(Frequency Selective Surface) with Defect Mode Characteristic (결함 모드 특성을 갖는 주파수 선택적 표면에 의한 안테나 이득 향상)

  • Kim, June-Hyong;Nam, Sung-Soo;Cho, Tae-Joon;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • In this paper, FSS(Frequency Selective Surface) using defect mode characteristic is proposed. The unit cell using defect mode characteristic of the proposed FSS is offered lower resonant frequency in the same cell size. The number of suitable array is optimized 13 by 13. Also, the patch antennas operated in WCDMA(Wideband Code Division Multiple Access) Tx band and Rx band are designed for the comparison. The gain value of proposed FSS-1 complex structure (the patch antenna of Tx band and FSS) is improved 3.3 dB from 9.98 dBi to 13.28 dBi in Tx band. The gain value of proposed FSS-2 complex structure(the patch antenna of Rx band and FSS) is improved 5.53 dB from 9.81 dBi to 15.34 dBi in Rx band. Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $13{\times}13$ array antenna is from 337 MHz(1.87 to 2.21 GHz). The measured radiation gain is 11.39 dBi(1.94 GHz), 13.11 dBi(2.05 GHz), 11.09 dBi(2.14 GHz). The measured radiation efficiency is 81 %. Because the proposed FSS structure has more higher gain, it will be applied to antenna of WCDMA repeater system.

Local Heating of an Injection Mold using Selective Induction Heating (선택적 유도가열을 사용한 사출금형의 국부가열기술)

  • Do, Bum-Suk;Park, Jung-Min;Eom, Hye-Ju;Park, Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF