• Title/Summary/Keyword: Frequency offset synchronization

Search Result 137, Processing Time 0.028 seconds

A Frequency Synchronization Technique of OFDM (OFDM 수신기를 위한 주파수 동기화 기법)

  • 오지성;정영모;이상욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.63-67
    • /
    • 1995
  • This paper proposes a new frequency offset correction technique for OFDM receivers on a frequency-selective fading channel. The frequency offset in the OFDM signals is known to introduce an interchannel interference among the multiple subcarriers, which degrades the receiver performance severely. In order to reduce the frequency offset, this paper describes an algorithm with two stages: acquisition and tracking. At both stages the algorithm oversamples the received OFDM signals. At the acquisition stage the frequency offset is reduced to half or less than the intercarrier spacing by matching the sign patterns of even and odd samples. Next, at tracking stage the frequency offset is compensated by a frequency detector which is controlled by the correlation of the even and odd sample sets. From the results, it is found that the proposed algorithm can correct the frequency offset even if the initial offset exceeds one half of th eintercairrers spacing.

Robust Frequency Offset Estimation with a Single Symbol for FH-OFDMA (단일 심볼을 이용한 FH-OFDMA의 주파수 옵셋 추정)

  • Yoon Dae jung;Han Dong seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.250-258
    • /
    • 2005
  • An initial carrier frequency offset estimation algorithm is proposed for a multi-user frequency bowing orthogonal frequency division modulation-frequency division multiple access (FH-OFDMA) system with a single preamble symbol. To mitigate the effect of the frequency offset, every mobile station needs to accurately and rapidly acquire synchronization. The proposed algorithm uses only one preamble symbol in which two kinds of subcarriers are designed for coarse and fine frequency offset estimation. The non-data aided estimation using the energy spectrum is exploited for fine offset estimation, and maximum likelihood estimation using correlation for coarse offset estimation. By combining the two estimation results, an accurate frequency offset can be estimated with a single symbol. Through simulations, the performance of the proposed algorithm is evaluated by comparing estimation error variance with a conventional method.

Active One-Way Ranging Method based on Post-Facto Wireless Synchronization in Wireless Sensor Networks (무선 센서망에서의 사후 무선동기 기반 능동형 단반향 거리추정 방식)

  • Nam, Yoon-Seok;Bae, Byoung-Chul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.234-242
    • /
    • 2010
  • Two-way ranging methods such as TWR and SDS-TWR have been considered for many ranging systems because these methods are useful in the absence of synchronization. To estimate the location of a mobile node, complicated ranging procedures consisting of ranging frames between an anchor node and the mobile node are performed. Supporting multiple mobile nodes such as a few hundreds or thousands and several anchor nodes, the ranging procedures have the fatal disadvantage of processing delay and inefficient traffic bandwidth. On the other hand, the one-way ranging method is simple and fast, but susceptible to network synchronization. In this paper, we propose a method to modify asynchronous ranging equations to establish exact frequency or frequency offset, a method to estimate frequencies or frequency offsets, and a method to establish post-facto synchronization with anchor nodes. The synchronization for a node pair is adapted using instantaneous time information and corresponding difference of distances can be determined. We evaluate the performance of TWR, SDS-TWR and proposed ranging algorithms.

Effect of Synchronization Errors with Distributed Beamforming in OFDM Systems (분산 빔포밍을 이용한 OFDM 시스템에서의 동기에러 영향 분석)

  • Kim, Haesoo;Lee, Kwangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • Three synchronization issues, i.e., symbol time, phase, and frequency, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for OFDM systems. For symbol timing error of cooperating signals, high frequency subcarriers are more susceptible as compared to low frequency ones. The desired signal loss due to phase and frequency offset is independent of subcarrier number. However, frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal. Performance degradation due to three synchronization errors is shown with various numbers of cooperating signals and offset values. It shows that the performance analysis is well matched with simulation results.

A High-speed/Low-power OFDM Frequency Offset Synchronization Compensation Block Design (OFDM 주파수 옵셋 동기화부 보상 블록의 저전력 설계)

  • Han, Jae-Woong;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.201-202
    • /
    • 2008
  • In this paper, an efficient frequency offset compensation design for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. The conventional CORDIC(COordinate Rotation Digital Computer) algorithm for frequency offset compensation utilizes CORDIC hardware and complex multiplier. But, proposed structure utilizes only one CORDIC hardware.

  • PDF

Real-time Synchronization Algorithm for Industrial Hybrid Networks: CAN and Sensor Networks (공장 자동화용 혼합형 네트워크를 위한 실시간 동기화 알고리즘의 성능 분석: CAN과 센서 네트워크)

  • Jung, Ji-Won;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2010
  • This paper discuss a performance evaluation of the synchronization algorithm for hybrid networks in industrial environments. The proposed algorithms minimizes synchronization errors which were caused from channel, Propagation, and frequency delays. The modified RBS and offset synchronization methods can be operated by adjustment parameters. The differential BP (Back-off Period) adjustment can synchronize the local time of each node with master node's time in hybrid networks. For the performance analysis, the data transmission time between the wired and wireless devices are investigated. The experimental results show the performance evaluations in terms of the polling service time and an average end-to-end delay.

Timing Synchronization with Channel Impulse Response in OFDM Systems (채널 임펄스 응답을 이용한 OFDM 시스템 시간 동기)

  • Kang, Eun-Su;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.53-58
    • /
    • 2007
  • OFDM (orthogonal frequency division multiplexing) is an effective modulation technique for high speed transmission over fading channels. However, it has a high bit error rate in the receiver if there is an error on frame synchronization because of phase rotation. A coherent OFDM system has to acquire exact timing synchronization of fraction and integer sampling positions. When a sampling offset exist the performance of a receiver will be degraded severely. In this paper, we propose an algorithm that acquires the fractional sampling offset in OFDM systems. This scheme compares the channel impulse responses with the early and late sampled signals having 0.5 sample offset from the estimated sampling positions by correlation with the received and training samples. Its performance is verified by computer simulations in multipath channels.

Design of a Frequency Synchronization Algorithm for S-DMT Cable Modem (S-DMT 방식 케이블 모뎀을 위한 주파수 동기 알고리즘 설계)

  • Cho, Byung-Hak
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.385-391
    • /
    • 2007
  • In this paper, we propose a frequency synchronization algorithm for S-DMT cable modem, which is practicable to the next-generation high capacity upstream physical layer in HFC networks. Analyzing several viable frequency synchronization algorithms of multicarrier systems, we proposed an algorithm using predetermined training sequence of repeated pattern in preamble field and residual frequency offset compensation with pilot signals. We verified that the simulation results of the proposed algorithm in AWGN showed good performance and suitability to the S-DMT upstream cable modem for fast frequency synchronization.

  • PDF

Quality Measurement Algorithm for IS-95 Reverse-link Signal (IS-95 역방향링크 신호의 품질 측정 알고리즘)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3428-3434
    • /
    • 2010
  • In this paper, we proposed and implemented a quality measurement algorithm for IS-95 reverse-link signal. To measure the quality of the received signal, equalization, carrier frequency/phase offset estimation, and timing synchronization are essential. And, all signal processing are carried out with baseband signal. The equalizer works with 4-oversampled samples to remove ICI(InterChip Interference). The frequency/phase offset estimator is followed by timing synchronizer since it can work without aid of data and timing information. As the number of interpolation in timing synchronization increases, the measurement accuracy improves, but computation load increases simultaneously. Therefore, one need to choose adequately the number of interpolation regarding to the platform performance to be used for the proposed algorithm.

Pilot-Aided Iterative Frequency Offset Estimation for Digital Video Broadcasting Systems (디지털 비디오 방송 시스템에서의 파일럿을 이용한 반복적 주파수 옵셋 추정방법)

  • Lee, Kyung-Taek;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.484-489
    • /
    • 2007
  • The main disadvantage of orthogonal frequency division multiplexing (OFDM) systems is its sensitivity to carrier frequency offset and timing offset. This paper proposes a simple way of improving the performance of the integer frequency offset (IFO) estimator in OFDM-based digital video broadcasting (DVB) system. By modifying the conventional maximum likelihood (ML) estimator to have multi-stage estimation strategy, IFO estimator is derived. Simulations indicate that the proposed IFO estimator works robustly with reduced computational burden when compared to ML estimator.