• Title/Summary/Keyword: Frequency modulation

Search Result 1,902, Processing Time 0.027 seconds

철도 급전시스템에서의 고조파 해석 및 대책 연구 (A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System)

  • 오광해;이장무;창상훈;한문섭;김길상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Maritime Wireless Data Communications of Predictive Frequency Hopping Technique

  • Bae, Sang-Hyun;Lee, Kwang-Ok;Jang, Bong-Seog
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.182-185
    • /
    • 2012
  • In this paper, For 4th generation wireless communication systems, we propose a method to predict FH patterns in FH-OFDMA systems. OFDM is recognized as a promising modulation technique. Multi-user allocation in OFDM system can use FH that provides the spectrum-spread techniques. If one can generate more predictable FH sequences, then performance of the system can be easily improved. Current random FH and simple adaptive FH methods, however, are not considering predicting FH sequences. In this paper we show that the sampling of the wireless faded signal is not realized as a certain probability nature. With this regard, the proposed predictive FH allocation method is designed to embed the unknown probability models. Simulation study shows that the predictive FH method is more accurately predict FH sequences than the random or simple adaptive FH methods. We will further improve this proposed method to apply QoS control and MAC function development in OFDMA based wireless physical structures, especially maritime wireless data communications.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터 (Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps)

  • 우정원;장기찬;김민지;김은수
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

Design and Implementation of Continuous Control for Household Electric Fan Speed for Virtual Reality Applications

  • Jonas John, Claud;Dae-Young, Na;Daseong, Han
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.518-528
    • /
    • 2022
  • Virtual Reality (VR) has been widely used in various applications to generate realistic virtual environments. A sense of immersion can be increased by providing additional stimuli such as tactile sensation to VR contents. However, it is still challenging to provide a realistic feel for the wind blowing over the whole body by smoothly controlling the airflow. To address this issue, we employ a household electric fan as a wind generating device to provide users with wind experience in VR environments. The wind generating device targets the whole body to mimic the wind we feel outside in our daily life. To do so, we present a low-cost method to smoothly control household fan speed using an Arduino microcontroller. Here, we use the Sinusoidal Pulse Width Modulation (SPWM) technique to generate the sinusoidal voltage required to drive the fan motor. Our experimental results show how Variable Voltage Variable Frequency (VVVF) is implemented at a low cost using our method for household fan speed control. The results can be applied to various VR applications to enhance the sense of immersion by providing users with realistic wind.

Resource scheduling scheme for 5G mmWave CP-OFDM based wireless networks with delay and power allocation optimizations

  • Marcus Vinicius G. Ferreira;Flavio H. T. Vieira;Alisson A. Cardoso
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.45-59
    • /
    • 2023
  • In this paper, to optimize the average delay and power allocation (PA) for system users, we propose a resource scheduling scheme for wireless networks based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) according to the first fifth-generation standards. For delay minimization, we solve a throughput maximization problem that considers CPOFDM systems with carrier aggregation (CA). Regarding PA, we consider an approach that involves maximizing goodput using an effective signal-to-noise ratio. An algorithm for jointly solving delay minimization through computation of required user rates and optimizing the power allocated to users is proposed to compose the resource allocation approach. In wireless network simulations, we consider a scenario with the following capabilities: CA, 256-Quadrature Amplitude Modulation, millimeter waves above 6 GHz, and a radio frame structure with 120 KHz spacing between the subcarriers. The performance of the proposed resource allocation algorithm is evaluated and compared with those of other algorithms from the literature using computational simulations in terms of various Quality of Service parameters, such as the throughput, delay, fairness index, and loss rate.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Wind tunnel tests of an irregular building and numerical analysis for vibration control by TLD

  • Jianchen Zhao;Jiayun Xu;Hang Jing
    • Wind and Structures
    • /
    • 제37권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Due to the irregular shape and the deviation of stiffness center and gravity center, buildings always suffer from complex surface load and vibration response under wind action. This study is dedicated to analyze the surface wind load and wind-induced response of an irregular building, and to discuss the possibility of top swimming pool as a TLD to diminish wind-induced vibration of the structure. Wind tunnel test was carried out on a hotel with irregular shape to analyze the wind load and structural response under 8 wind incident angles. Then a precise numerical model was established and calibrated through experimental results. The top swimming pool was designed according to the principle of frequency modulation, and equations of motion of the control system were derived theoretically. Finally, the wind induced response of the structure controlled by the pool was calculated numerically. The results show that both of wind loads and wind-induced responses of the structure are significantly different with wind incident angle varies, and the across-wind response is nonnegligible. The top swimming pool has acceptable damping effect, and can be designed as TLD to mitigate wind response.

Design of Projection Optical System for Target Imaging Simulator with Long Exit Pupil Distance

  • Xueyuan Cao;Lingyun Wang;Guangxi Li;Ru Zheng
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.745-754
    • /
    • 2023
  • In order to test the recognition ability and accuracy of a target imaging simulator under the irradiation of solar stray light in a laboratory environment, it needs to be fixed on a five-axis turntable during a hardware-in-the-loop simulation test, so the optical system of the simulator should have a long exit pupil distance. This article adopts a secondary imaging method to design a projection optical system suitable for thin-film-transistor liquid crystal displays. The exit pupil distance of the entire optical system is 1,000 mm, and the final optimization results in the 400 nm-850 nm band show that the modulation transfer function (MTF) of the optical system is greater than 0.8 at the cutoff frequency of 72 lp/mm, and the distortion of each field of view of the system is less than 0.04%. Combined with the design results of the optical system, TracePro software was used to model the optical system, and the simulation of the target imaging simulator at the magnitude of -1 to +6 Mv was analyzed and verified. The magnitude error is less than 0.2 Mv, and the irradiance uniformity of the exit pupil surface is greater than 90%, which meets the requirements of the target imaging simulator.

Design of a Light and Small Dual-band Airborne Despun Optical System

  • Luqing Zhang;Ning Zhang;Xiping Xu;Kailin Zhang;Yue Zhang;Jiachong Li
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.97-104
    • /
    • 2024
  • In aerial cameras, image quality is easily affected by weather, temperature, and the attitude of the aircraft. Aiming at this phenomenon, based on the theory of two-step zoom optical systems, a dual-band optical-despun two-step zoom optical system is designed. The system has a small field of view of 2.00° × 1.60°, and a large field of view of 4.00° × 3.20°. In the zoom process, the wavelength range is 0.45-0.70 ㎛ and 0.75-1.10 ㎛, and the size of the optical system is 168 mm (L) × 90 mm (W) × 60 mm (H). The overall lens weight is only 170.8 g, which has advantages for miniaturization and light weight. At the Nyquist frequency of 104 lp/mm, the modulation transfer function of the visible-light optical system is more than 0.44, and that of the near-infrared optical system is more than 0.30, both of which have good imaging quality and tolerance characteristics in the range of -45 to 60 ℃.