Journal of the Korean Society for Precision Engineering
/
v.23
no.6
s.183
/
pp.119-127
/
2006
A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.
A new method of spindle waveform detection is presented for the automated analysis of sleep EEG. The method is based on the combined application of signal conditioning in the time-domain and local spectrum analyzing in the frequency-domain. The overall detection system is implemented and, tested in real-time with a total of 24 hour data obtained from four subjects. The result shows an average agreement of 86.7% with the visually inspected result.
There are many Problems such as low detection ratio, velocity and increase of false hit ratio on the detection of gradual scene changes with the previous shot transition detection algorithms. In this paper, we Propose an improved dissolve detection method using color information on low-frequency subband and edge elements on high-frequency subband. The Possible dissolve transition are found by analyzing the edge change ratio in the high-frequency subband with edge elements of each direction. Using the double chromatic difference on the lowest frequency subband, we have the improvement of the dissolve detection ratio. The simulation results show that the performance of the proposed algorithm is better than the conventional one for dissolve detection on a diverse set of uncompressed video sequences.
The d-q harmonic detecting algorithms are dominant methods to generate current references for active power filters (APF). They are often implemented in the synchronous frame and time domain. This paper researches the frequency characteristics of d-q synchronous transformations, which are closely related to the analysis and design issues of control system. Intuitively, the synchronous transformation is explained with amplitude modulation (AM) in this paper. Then, the synchronous filter is proven to be a time-invariant and linear system, and its transfer function matrix is derived in the stationary frames. These frequency-domain models imply that the synchronous transformation has an equivalent effect of frequency transformation. It is because of this feature, the d-q method achieves band-pass characteristics with the low pass filters in the synchronous frame at run time. To simplify these analytical models, an instantaneous positive-negative sequence frame is proposed as expansion of traditional symmetrical components theory. Furthermore, the synchronous filter is compared with the traditional bind-pass filters based on these frequency-domain analytical models. The d-q harmonic detection methods are also improved to eliminate the inherent coupling effect of synchronous transformation. Typical examples are given to verify previous analysis and comparison. Simulation and experimental results are also provided for verification.
Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.
Lee, Yunjung;Lee, Gihyoun;Na, Sung Dae;Seong, Ki Woong;Cho, Jin Ho;Kim, Myoung Nam
Journal of Korea Multimedia Society
/
v.19
no.3
/
pp.557-566
/
2016
Heart sounds generated by the beating heart and blood flow reflect the turbulence created when the heart valves snap shut. Cardiac diagnosis is typically started by an auscultation using a stethoscope, from which a medical doctor, depending on his hearing capabilities and training, listens and interprets the acoustic signal. This method of diagnostic is uncertain, mostly due to the fact that human ear loses the acoustic frequency sensitivity through the years. Even though an auscultation has some weaknesses like uncertainty, it is considered as a primary tool due to its simplicity. In this paper, heart murmur detection algorithm is proposed using time and frequency characteristics of heart sound. The propose heart murmur detection method adapted conventional primary heart sound detection method in time domain and modified spectral flatness method in frequency domain for detecting heart murmurs. From experimental results, it is confirmed that the proposed algorithm detect the heart murmurs efficiently.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2003.10a
/
pp.137-142
/
2003
A fundamental study for developing a system of fault diagnosis of a pump is performed by using neural network. The acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The signals were obtained in various driving frequencies in order to obtain many types of data from a limited number of pumps. The acoustic data in frequency domain were managed to multiples of real driving frequency with the aim of easy comparison. The neural network model used in this study was 3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer, Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. The results showed neural network trained by acoustic signals can be used as a simple method far a detection of machine malfunction or fault diagnosis.
Transactions of the Korean Society of Machine Tool Engineers
/
v.13
no.5
/
pp.81-86
/
2004
A fundamental study for developing a system of fault diagnosis of a pump is performed by using neural network. The acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The signals were obtained in various driving frequencies in order to obtain many types of data from a limited number of pumps. The acoustic data in frequency domain were managed to multiples of real driving frequency with the aim of easy comparison. The neural network model used in this study was 3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer. Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. The results showed neural network trained by acoustic signals can be used as a simple method for a detection of machine malfuction or fault diagnosis.
Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.