• Title/Summary/Keyword: Frequency divider

Search Result 236, Processing Time 0.025 seconds

Design of ECC Scalar Multiplier based on a new Finite Field Division Algorithm (새로운 유한체 나눗셈기를 이용한 타원곡선암호(ECC) 스칼라 곱셈기의 설계)

  • 김의석;정용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.726-736
    • /
    • 2004
  • In this paper, we proposed a new scalar multiplier structure needed for an elliptic curve cryptosystem(ECC) over the standard basis in GF(2$^{163}$ ). It consists of a bit-serial multiplier and a divider with control logics, and the divider consumes most of the processing time. To speed up the division processing, we developed a new division algorithm based on the extended Euclid algorithm. Dynamic data dependency of the Euclid algorithm has been transformed to static and fixed data flow by a localization technique, to make it independent of the input and field polynomial. Compared to other existing scalar multipliers, the new scalar multiplier requires smaller gate counts with improved processor performance. It has been synthesized using Samsung 0.18 um CMOS technology, and the maximum operating frequency is estimated 250 MHz. The resulting performance is 148 kbps, that is, it takes 1.1 msec to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption/decryption, and key exchanges in real time environments.

Development of Common PCS Base Station System (PCS 공용 기지국 시스템 개발)

  • 황선호;박준현;김훈석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.214-217
    • /
    • 2001
  • This paper presents an implementation methodology of common Rf- integrated PCS base station system which, is capable of providing PCS services for 3 PCS carriers concurrently and wireless system performance evaluation data is shown. We have built up a common PCS base station system using a commonization module, which is consisted of a multi-channel combiner, duplexer, LNA, power divider, feeder line, and a common set of antennas. It was shown that the performance of the system within the total 30MHz PCS frequency range is uniformly acceptable and measured signal quality and coverage are equivalent to that of the individual PCS base station. It is expected that PCS carriers are able to save a huge amount of installation and maintenance expenses by installing and sharing this base station system. This paper forms a groundwork for deploying efficient and economical IMT-2000 network.

  • PDF

Circularly Polarized Antenna with Wide Axial-Ratio Bandwidth (광대역 축비 특성의 원형 편파 안테나)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.842-849
    • /
    • 2010
  • This paper deals with a TT&C circularly polarized turnstile antenna for LEO satellites. The turnstile antenna consists of radiator for radiating power to free-space and power divider for generating circularly polarized wave. we presents a radiator to tolerate in space environments and a power divider to provide flat phase difference at wide bandwidth. The bandwidth of the proposed antenna covers the frequency bands of up- and down-link. The antenna shows wide beamwidth and enhanced axial ratio for unfavorable space environments.

Design of Iterative Divider in GF(2163) Based on Improved Binary Extended GCD Algorithm (개선된 이진 확장 GCD 알고리듬 기반 GF(2163)상에서 Iterative 나눗셈기 설계)

  • Kang, Min-Sup;Jeon, Byong-Chan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we first propose a fast division algorithm in GF($2^{163}$) using standard basis representation, and then it is mapped into divider for GF($2^{163}$) with iterative hardware structure. The proposed algorithm is based on the binary ExtendedGCD algorithm, and the arithmetic operations for modular reduction are performed within only one "while-statement" unlike conventional approach which uses two "while-statement". In this paper, we use reduction polynomial $f(x)=x^{163}+x^7+x^6+x^3+1$ that is recommended in SEC2(Standards for Efficient Cryptography) using standard basis representation, where degree m = 163. We also have implemented the proposed iterative architecture in FPGA using Verilog HDL, and it operates at a clock frequency of 85 MHz on Xilinx-VirtexII XC2V8000 FPGA device. From implementation results, we will show that computation speed of the proposed scheme is significantly improved than the existing two approaches.

A Low Jitter Dual Output Frequency Synthesizer Using Phase-Locked Loop for Smart Audio Devices (위상고정루프를 이용한 낮은 지터 성능을 갖는 스마트 오디오 디바이스용 이중 출력 주파수 합성기 설계)

  • Baek, Ye-Seul;Lee, Jeong-Yun;Ryu, Hyuk;Lee, Jongyeon;Baek, Donghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • A Low jitter dual output frequency synthesizer for smart audio devices is described in this paper. It has been fabricated in a 1.8 V Dongbu $0.18-{\mu}m$ CMOS process. Output frequency is controlled by 3 rd order Sigma-Delta Modulation and digital divider. The frequency synthesizer has a size of $0.6mm^2$, frequency range of 0.6-200 MHz, loop bandwidth of 350 kHz, and rms jitter of 11.4 ps-21.6 ps.

Crystal-less clock synthesizer with automatic clock compensation for BLE smart tag applications (자동 클럭 보정 기능을 갖춘 크리스털리스 클럭 합성기 설계 )

  • Jihun Kim;Ho-won Kim;Kang-yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2024
  • This paper presents a crystal-less reference clock recovery (CR) frequency synthesizer with compensation designed for Bluetooth Low Energy (BLE) Smart-tag applications, operating at frequencies of 32, 72, and 80MHz. In contrast to conventional frequency synthesizers, the proposed design eliminates the need for external components. Using a single-ended antenna to receive a minimal input power of -36dBm at a 2.4GHz signal, the CR synthesizes frequencies by processing the RF signal received through a Low Noise Amplifier ( L N A ) . This approach allows the system to generate a reference clock without relying on a crystal. The received signal is amplified by the LNA and then input to a 16-bit ACC (Automatic Clock Compensation) circuit. The ACC compares the frequency of the received signal with the oscillator output signal, using the synthesis of a 32MHz reference clock through a frequency compensation method. The oscillator is constructed using a Ring Oscillator (RO) with a Frequency Divider, offering three different frequencies (32/72/80MHz) for various system components. The proposed frequency synthesizer is implemented using a 55-nm CMOS process.

Gain Controllable ABC using Two-Stage Resistor String for CMOS Image Sensor

  • No, Ju-Young;Yoon, Jin-Han;Park, Soo-Yang;Park, Yong;Son, Sang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.341-344
    • /
    • 2002
  • This paper is proposed a 8-bit analog to digital converter for CMOS image sensor. A analog to digital converter for CMOS image sensor is required function to control gain. Frequency divider is used In control gain in this proposed analog to digital converter. At 3.3 Volt power supply, total static power dissipation is 8㎽ and programmable gain control range is 30㏈. Newly suggested analog to digital converter is designed by 0.35um 2-poly 4-metal CMOS technology.

  • PDF

Design of a CMOS Charge Pump PLL of UWB System LO Generation (초광대역 시스템 Hopping Carrier 발생을 위한 0.18um 4.224GHz CMOS PLL 설계)

  • Lee, J.K.;Kang, K.S.;Park, J.T.;Yu, C.G.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.845-848
    • /
    • 2005
  • This paper describes a 4.224GHz CMOS charge pump PLL for Mode 1 MB-OFDM UWB hopping carrier generation. It includes a qudrature VCO of which the frequency range is from 3.98GHz to 4.47GHz(@ 0.4 to 1.5 V), a divider, a PFD, a loop filter, a charge pump, and a lock detector. Designed in a 0.18um CMOS technology, the PLL draws 6.6mA from a 1.8V supply. The phase noise of the designed VCO is -133dBc/Hz@3MHz.

  • PDF

Low Phase Noise CMOS VCO with Hybrid Inductor

  • Ryu, Seonghan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.158-162
    • /
    • 2015
  • A low phase noise CMOS voltage controlled oscillator(VCO) for multi-band/multi-standard RF Transceivers is presented. For both wide tunability and low phase noise characteristics, Hybrid inductor which uses both bondwire inductor and planar spiral inductor in the same area, is proposed. This approach reduces inductance variation and presents high quality factor without custom-designed single-turn inductor occupying large area, which improves phase noise and tuning range characteristics without additional area loss. An LC VCO is designed in a 0.13um CMOS technology to demonstrate the hybrid inductor concept. The measured phase noise is -121dBc/Hz at 400KHz offset and -142dBc/Hz at 3MHz offset from a 900MHz carrier frequency after divider. The tuning range of about 28%(3.15 to 4.18GHz) is measured. The VCO consumes 7.5mA from 1.3V supply and meets the requirements for GSM/EDGE and WCDMA standard.

Novel New Approach to Improve Noise Figure Using Combiner for Phase-Matched Receiver Module with Wideband Frequency of 6-18 GHz

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • This paper proposes the design and measurement of a 6-18 GHz front-end receiver module that has been combined into a one- channel output from a two-channel input for electronic warfare support measures (ESM) applications. This module includes a limiter, high-pass filter (HPF), power combiner, equalizer and amplifier. This paper focuses on the design aspects of reducing the noise figure (NF) and matching the phase and amplitude. The NF, linear equalizer, power divider, and HPF were considered in the design. A broadband receiver based on a combined configuration used to obtain low NF. We verify that our receiver module improves the noise figure by as much as 0.78 dB over measured data with a maximum of 5.54 dB over a 6-18 GHz bandwidth; the difference value of phase matching is within $7^{\circ}$ between ports.