• Title/Summary/Keyword: Frequency and visualization

Search Result 318, Processing Time 0.023 seconds

Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer (주기적인 분사/흡입이 난류경계층에 미치는 영향)

  • Park Young-Soo;Park Sang-Hyun;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

Experimental Analysis of Flow Characteristics around Wind-Turbine Blades (풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

A study on supersonic jet using Schlieren technique and numerical simulation in low-pressure condition (Schlieren 기법과 수치해석을 이용한 저압 상황의 초음속 제트 유동 연구)

  • Ji, Yun Young;Jang, Dong Kyu;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Research on shock structures of supersonic jet through visualization experiments in low-pressure environment have not been actively conducted. Therefore, in this study, shock waves and supersonic jets were analyzed and compared by numerical analysis and Schlieren technique at low-pressure. Schlieren technique is commonly used to visualize the shock waves generated by density gradient as interferometric methods. Pressure ratio of entrance and ambient was set around 4 to observe moderate under-expanded jet. For validation of experimental and numerical results, the shock structure and frequency were compared. In the case of ST and C nozzle, the results were shown that the difference of shock cell distance was within 10%. The Mach number gradually decreased due to energy reduction, and the error rate was within 7%. D nozzle was not fitted to be observing the shock structure. Because the interface between rarefaction fan and supersonic jet was ambiguous and oscillating phemenoma occurred at end of jet, the supersonic jet in low ambient pressure was observed and analyzed.

An experimental study of a flow field generated by a rotating cylinder on a plane moving at free stream velocity (자유흐름 속도의 이동면과 맞닿은 회전실린더 주위 유동장의 실험적 해석)

  • Park, Un-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.700-712
    • /
    • 1997
  • The flowfield generated by a 2-D rotating cylinder on a plane moving at freestream velocity was experimentally investigated in a wind tunnel to simulate aerodynamic characteristics of rotating wheels of an automobile. In the flowfield around a rotating cylinder at 3*10$^{3}$ < Re$_{d}$<8*10$^{3}$, unique mean flow and turbulence characteristics were confirmed by hot-wire measurements as well as frequency analysis, which was supported by flow visualization. In the vicinity of a rotating cylinder, a unique turbulence structure on .root.over bar u'$^{2}$ profiles was formed in hump-like shape at 1 < y/d < 3. A peak frequency which characterized the effect of a rotating cylinder had the same value of the rotation rate of a cylinder. In case of cylinder rotation, the depths of mean velocity -defect and turbulent-shear regions were thickened by 20-40% at 0 < x/d < 10 compared with the case of cylinder stationary. Far downstream beyond x/d > 10, the flowfield generated by a rotating cylinder showed self-similarity in the profiles of mean velocity and turbulence quantities. The effect of a rotating cylinder was independent of its rotation rate and Reynolds number in the measurement range.

Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water (벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구)

  • Changhoon Oh;Joon Hyun Kim;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Measurement of RBC (red blood cell) deformability using 3D Printed Chip combined with Smartphone (스마트 폰 기반 3D 프린팅 칩을 이용한 적혈구 변형성 측정)

  • Lee, Suhwan;Hong, Hyeonji;Yeom, Eunseop;Song, Jae Min
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2020
  • RBC (red blood cell) deformability is one of factors inducing blood shear thinning effect. Reduction of RBC deformability increases blood viscosity in high shear region. In this study, 3D printed chip with proper distribution of wall shear rate (WSR) was proposed to measure RBC deformability of blood samples. To fabricate 3D printed chip, the design of 3D printed chip determined through numerical simulation was modified based on the resolution of the 3D printer. For the estimation of pressure drop in the 3D printed chip, two bypass outlets with low and high WSR are exposed to atmospheric pressure through the needles. By positioning the outlet of needles in the gravity direction, the formation of droplets at bypass outlets can be captured by smartphone. Through image processing and fast Fourier transform (FFT) analysis, the frequency of droplet formation was analyzed. Since the frequency of droplet formation is related with the pressure at bypass, high pressure drop caused by reduction of RBC deformability can be estimated by monitoring the formation of blood droplets using the smartphone.

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

Visualization of movie recommendation system using the sentimental vocabulary distribution map

  • Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2016
  • This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.