• Title/Summary/Keyword: Frequency Synchronization

Search Result 440, Processing Time 0.025 seconds

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

Empathy Recognition Method Using Synchronization of Heart Response (심장 반응 동기화를 이용한 공감 인식 방법)

  • Lee, Dong Won;Park, Sangin;Mun, Sungchul;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.45-54
    • /
    • 2019
  • Empathy has been observed to be pivotal in enhancing both social relations and the efficiency of task performance. Empathetic interaction has been shown to begin with individuals mirroring each other's facial expressions, vocal tone, actions, and so on. The internal responses of the cardiovascular activity of people engaged in empathetic interaction are also known to be synchronized. This study attempted to objectively and quantitatively define the rules of empathy with regard to the synchronization of cardiac rhythm between persons. Seventy-four subjects participated in the investigation and were paired to imitate the facial expressions of their partner. An electrocardiogram (ECG) measurement was taken as the participants conducted the task. Quantitative indicators were extracted from the heart rhythm pattern (HRP) and the heart rhythm coherence (HRC) to determine the difference of synchronization of heart rhythms between two individuals as they pertained to empathy. Statistical significance was confirmed by an independent sample t-test. The HRP and HRC correlation(r) between persons increased significantly with empathy in comparison to an interaction that was not empathetic. A difference of the standard deviation of NN intervals (SDNN) and the dominant peak frequency decreased. Therefore, significant parameters to evaluate empathy have been proposed through a step-wise discrimination analysis. Empathic interactions may thus be managed and monitored for high quality social interaction and communication.

A Comparison of the Multipath Error Property In Wireless Location of CDMA and OFDM (CDMA 및 OFDM 기반 무선측위의 다중경로오차 특성 비교분석)

  • Bang Hye-Jung;Lee Jang-Gyu;Jee Gyu-In;Kim Jin-Won;Jung Hee;Hyun Moon-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.989-995
    • /
    • 2006
  • This paper shows that the OFDM(Orthogonal Frequency Division Multiplex) system is robust to multipath than CDMA (Code Division Multiple Access) system and it has a strong possibility to be utilized as a supplementing wireless location system for the forthcoming portable internet network. The OFDM system based on IEEE 802.16e is a wireless TDD (Time Division Duplex) OFDMA (Orthogonal Frequency Division Multiple Access) system providing portable internet services in 2.3 GHz frequency band and is scheduled in service in Korea starting in 2006. In this paper, multipath error is calculated using a two-ray model and compared with that of a CDMA system which is following IS-95. The OFDM system shows a maximum multipath error of 3 m while a CDMA system shows a maximum multipath error of 61 m. For this simulation, an early-late technique is used. This technique is usually used to match synchronization of signal in DLL(Delay Lock Loop).

Consideration of Performance in Synchronization of Frequency Hopping / Code Division Multiple Access System (FH/CDMA를 위한 동기화 기술의 성능 고찰)

  • 이승대;방성일;진년강
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.4
    • /
    • pp.18-29
    • /
    • 1994
  • In this paper, the performance of stepped serial search scheme and matched filter scheme for code acqusition in FH / CDMA are evaluated under land mobile radio communication channel environments. And delay lock loop scheme is used as code tracking system. As the results for code acquisition system, it is shown that the performance of stepped searial scheme is superior to matched filter scheme, because system complexity is reduced and system performance is improved by increasing the hopping frequency not to substitute for special hardware. Also, it is shown that its performance is improved under Rayleigh/ Rician fading environments. As the results for code tracking system, it is found that mean hold time is increased due to the increase of the number of lock state and hopping frequency, M.

  • PDF

Performance Analysis of Wideband CDMA System with Feq./Timing Error in Muliti-path Fading Channel (다중경로 감쇄 채널에서의 광대역 부호분할다중접속방식 시스템의 주파수 및 보호 동기 오차에 따른 성능 분석)

  • 최영관;안철용;김동우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.773-781
    • /
    • 2000
  • The average bit error rate of wideband CDMA in forward link is evaluated for frequency and timing errors in multipath Rayleigh fading channel. The channel BER is evaluated analytically and information BER is investigated with simulation. The performance degradation due to the code/frequency synchronization errors was obtained through simulation for particular two coding schemes - convolutional codes and turbo codes. The results show 1dB degradation due to Tc/4 timing error and 0.5dB degradation due to 50Hz frequency error, for both coding schemes.

  • PDF

Packet Detection and Frequency Offset Estimation/Correction Architecture Design and Analysis for OFDM-based WPAN Systems (OFDM-기반 WPAN 시스템을 위한 패킷 검출 및 반송파 주파수 옵셋 추정/보정 구조 설계 및 분석)

  • Back, Seung-Ho;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • This paper presents packet detection, frequency offset estimation architecture and performance analysis for OFDM-based wireless personal area network (WPAN) systems. Packet detection structure is used to find the start point of a packet exactly in WPAN system as the correlation value passes the constant threshold value. The applied autocorrelation structure of the algorithm can be implemented simply compared to conventional packet detection algorithms. The proposed frequency offset estimation architecture is designed for phase rotation process structure, internal bit reduction to reduce hardware size and the frequency offset adjustment block to reduce look-up table size unlike the conventional structure. If the received signal can be compensated by estimated frequency offset through the correction block, it can reduce the impact on the frequency offset. Through the performance result, the proposed structure has lower hardware complexity and gate count compared to the conventional structure. Thus, the proposed structure for OFDM-based WPAN systems can be applied to the initial synchronization process and high-speed low-power WPAN chips.

Analysis of IEEE 802.11a wireless LAN system considering frequency offset compensation and channel estimation in the indoor multipath channel (실내 다중경로 채널에서 주파수 오프셋 보상 및 채널 추정을 고려한 IEEE 802.11a 무선 LAN 시스템의 성능 분석)

  • 오동진;김철성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.47-54
    • /
    • 2004
  • The previous works for WLAN system based on OFDM is mainly individual study for independent frequency offset or symbol synchronization. In this paper, the performance of IEEE 802.11a WLAN(Wireless Local Area Network) system in the realistic indoor multipath channel models is analyzed with frequency offset compensation and channel estimation methods. For the performance analysis of the WLAN system indoor Rayleigh multipath channels are adopted, and the BER(Bit Error Rate) of WLAN system is calculated with y2 code-rate 16-QAM based on standard specification. From the simulation results, the difference of required Eb/No for BER of 10-3 is 1-2dB between the channel estimation and frequency offset compensation, and perfect channel estimation and no frequency offset.

Normalized CP-AFC with multistage tracking mode for WCDMA reverse link receiver (다단 추적 모드를 적용한 WCDMA 역방향 링크 수신기용 Normalized CP-AFC)

  • Do, Ju-Hyeon;Lee, Yeong-Yong;Kim, Yong-Seok;Choe, Hyeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.8
    • /
    • pp.14-25
    • /
    • 2002
  • In this paper, we propose a modified AFC algorithm which is suitable for the implementation of WCDMA reverse link receiver modem. To reduce the complexity, the modified CP-FDD algorithm named 'Normalized CP-FDD' is applied to the AFC loop. The proposed FDD algorithm overcomes the conventional CP-FDD's sensitivity to the variance of input signal amplitude and increases the linear range of S -curve. Therefore, offset frequency estimation using the proposed scheme can be more stable than the conventional method. Unlike IS-95, since pilot symbol in WCDMA is not transmitted continuously, we introduce a moving average filter at the FDD input to increase the number of cross-product. So, tracking speed and stability are improved. For more rapid frequency acquisition and tracking, we adopt a multi-stage tracking mode. Using NCO having ROM table structure, the frequency offset is compensated. We applied the proposed algorithm in the implementation of WCDMA base station modem successfully.

Performance of OFDM M-ary QAM System in the presence of Carrier Frequency Offset (반송파 주파수 옵셋에 따른 OFDM M-ary QAM 시스템의 성능 분석)

  • 계선형;유형석;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1024-1031
    • /
    • 1999
  • In order to transmit high-speed wide band signals efficiently in multipath fading environments, M-ary QAM signalling combined with OFDM transmission technique is applied. In this paper, the effect of synchronization error caused by carrier frequency offset and SER(Symbol Error Rate) performance of OFDM-16QAM and OFDM-64QAM are theoretically analyzed. Our result shows that as the number of sub-carrier in OFDM system increases the frequency-offset caused inter-channel interference(ICI) increases significantly, and that an error floor occurs even at high SNR of OFDM system. For OFDM-64QAM, the error floor occurs at SER=1$\times$10-7 when a normalized frequency-offset is 0.001, in which the SNR degradation is much greater than that of OFDM-16QAM. From this study the maximum allowable frequency-offset of OFDM-16QAM and OFDM-64QAM systems can be determined to meet the specific SER requirement.

  • PDF

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.