• Title/Summary/Keyword: Frequency Scanning Antenna

Search Result 26, Processing Time 0.034 seconds

Expansion of Variable Range of Oscillation Frequency of Active Phased Array Antenna by a Varactor Diode (바랙터다이오드에 의한 능동 위상차 배열 안테나의 발진 주파수 가변 범위의 확장)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.521-528
    • /
    • 2003
  • A varactor diode was utilized in order to expand variable range of the natural oscillation frequency of an active phased-array antenna. We have conformed experimentally that the variable range of the natural oscillation frequency was expanded about three times in the oscillator controlled by the varactor diode. When frequency difference was given to the oscillators in the two elements antenna system, phase difference was appeared between the oscillators. The 2-, 3-, 5-elements patch antenna array was composed for the beam scanning experiments. All the above patch antennas showed good phased array characteristics. The experimental results are as follows that the scanning angle of the 2-elements array antenna is 28.6$^{\circ}$, the 3-elements array antenna is 29.4$^{\circ}$, and the 5-elements array antenna is 26.2$^{\circ}$.

Fabrication of the Capacitance Controlled Active Integrated Phased Array Antenna and It's Scanning Characteristics (용량 조정형 능동 집적 배열 안테나의 제작과 방사 방향 주사 특성)

  • Choi, Young-Kyu;Nam, Beong-Geun;Shin, Sang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1807-1813
    • /
    • 2007
  • This paper deals with extending the variable natural oscillation frequency range of an active integrated FET oscillator. In this paper, we conform experimentally that the variable range of the natural oscillation frequency is expanded about three times in the oscillator controlled by the varactor diode. When the frequency difference is given to the oscillators in the two element antenna system, phase difference appeared between the oscillators. The 2-, 3-, 4-, 5-element patch antenna arrays are composed for the beam scanning experiments. All the above patch antennas show good phased array characteristics. The range of the scanning angle is about $30^{\circ}$, and the radiation power is gradually increased from $50{\mu}W\;to\;200{\mu}W$. The radiation patterns we sharpened as the number of elements is increased.

Symmetrical Scanning Leaky Wave Antenaa Using Double Negative and Double Positive Transmission Line (Double Negative, Positive 전승 선로를 이용한 대칭적적인 주파수 스캐닝 누설파 안테나)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1069-1074
    • /
    • 2004
  • In this paper, we have designed artificial double negative(DNG) transmission line composed of series inter-digital capacitor and two shunt inductive short stubs. This artificial DNG transmission line has the property of double positive (DPS) transmission line over some frequency ranges due to RF nature. In detail, this transmission line simultaneously has the contrary properties of DNG and DPS transmission line depending on operation frequency. DPS/DNG transmission line at leaky region is utilized to design frequency scanning antenna with backfire-to-endfire. We have simulated and measured the dispersion and for-field radiation beam patterns of symmetrical leaky wave antenna. The results show rough agreement.

The Design of Microstrip Array Antenna using Chebyscheff Polynomial (Chebyscheff 다항식을 이용한 Microstrip Array Antenna의 설계)

  • 이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.542-548
    • /
    • 1989
  • Rectangular microstrip antenna array using Chebyscheff polynomial is designed. The required relative currents in the rectangular microstrip array antenna are 1:2:2:1. The input admittance and returen loss of array antenna are calculated from transmission line model circuit include feed line. The calculated resonant frequency valused are in good agreement with measured values. Also, the sharp beam scanning characteristic of perfect electronic method is presented.

  • PDF

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

A Study on Broadband Microstrip Antennas using Piezoelectric Substrates (압전기판을 이용한 광대역 마이크로스트립 안테나에 관한 연구)

  • Cho, Ik-Hyun;Kim, Young-Hoon;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1846-1848
    • /
    • 1999
  • A technique is investigated for achieving broadband properties by controlling the operation frequency of microstrip antennas. The control is achieved by applying DC and AC bias to the microstrip antenna. Air gap antenna with pzt post and microstrip antenna with simple rectangular patch on the $LiNbO_3$ substrate were fabricated. In the case of Air gap antenna, the variation of operating frequency was 11Mhz and $LiNbO_3$ antennas was 11Mhz. Also, frequency scanning was achieved by appling AC bias.

  • PDF

Phased Array Behavior of the Coupling of the Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 발진기 결합계의 위상차 배열 동작)

  • Choi, Young-Kyu;Kim, Gi-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.438-444
    • /
    • 2015
  • A new approach to the active phased arrays for the second harmonic generation is presented. Phase variation between the second harmonic oscillators by the mutual synchronization is analyzed theoretically. In this coupling, the active antenna consists of the FET oscillator which plays two roles in fundamental oscillation and frequency multiplying, and the patch antenna resonated at the second harmonic frequency. The radiated second harmonic wave was scanned by varying the free-running oscillation frequencies of the active antennas. In the experiment using the 2-elements array and the 4-elements array, the radiated beam of the second harmonic wave was scanned more widely compared with the case of the fundamental wave radiation.

4×4 Broadband Phased Array Antenna Using LHTL Based Phase Shifter (LHTL 위상변위기를 이용한 4×4 광대역 위상배열안테나)

  • Park, Soonwoo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.379-382
    • /
    • 2017
  • This paper proposes a $4{\times}4$ broadband phased array antenna using a Left-Handed Transmission Line (LHTL) based phase shifter. The phased array is constructed with sixteen quasi-Yagi antenna elements and the phase shifters, as well as four power dividers. A key component of the system, the LHTL based phase shifter is able to control a phase delay of incident waves linearly and continuously. The fabricated phased array antenna operate for a frequency range of 800 MHz (1.6 GHz~2.4 GHz). The beam scanning range of the $4{\times}4$ array antenna is ${\pm}27^{\circ}$ horizontally and vertically while the antenna gain is maintained with a variation of ${\pm}1.4dBi$.

A Study on the Radiation Characteristics of Linear phased array antenna using current divider. (전류 분배기를 이용한 선형위상배열 안테나에 관한 연구)

  • 이창식;유재문;이종악
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.419-427
    • /
    • 2000
  • The 4 by 4 microstrip phased array antenna designed and radiation characteristics are studied. The design frequency was chosen to be 5.8GHz. Chebyshev ratio was achieved by unequal power divider and Wilkinson power divider. The ratio of current at each port is 1 : 2.6 : 2.6 : 1 and then side lobe level is less than -30 dB. It is shown that the radiation beam direction can be changed up to 30。 by control the phase at each port. The result can be used to design electrically controllable microwave scanning antennas.

  • PDF

The Design of Microstrip Array Antenna with Phase Lock (위상 고정 마이크로스트립 어레이 안테나 설계)

  • 강희조;오양현;고영혁
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.791-798
    • /
    • 1991
  • In this paper, microstrip array antenna with the phase lock are designed to consist of main lobe and sidelobe with difference 21.97dB for sharp beam pattern using Tchebyscheff polynominals. Microstrip array antenna with phase lock of 0$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$ are designed, to scan beam for 0$^{\circ}$, 6$^{\circ}$, 12$^{\circ}$ to be 1:2:2:1 for the relative current distribution. The designed microstrip array antenna with phase lock is measured in terms of various characteristics such as return loss, resonant frequency, radiation pattern, bandwidth, beamwidth, and the measurement value and theoretical value agreed with each other. Also, the patch array antenna with the relative current distribution is presented phase shift for beam scanning.

  • PDF