• Title/Summary/Keyword: Frequency Response function

Search Result 1,054, Processing Time 0.027 seconds

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART II, Experimental validation and investigation (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART II, 실험적 검증 및 고찰)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, the dynamic characteristics of an air spring connected with an external chamber through a flexible tube are examined. The uncoupled dynamic parameters of the air spring are identified through experiments, followed by the suggestion of a model-based approach to obtain the remaining coupled dynamic parameters using the various frequency response functions derived in PART I paper [1]. To improve or control the damping characteristics of the air spring, this vibration isolation air spring system is physically established in laboratory scale. And we attempt to identify various parameters used to describe to air spring system by both theoretically [1] and experimentally, which is performed in this report. The damping parameter of the tube system is identified through experiments on the system incorporated with the air cylinder, and a nonlinear regression procedure is employed to find solutions. The resulting value is used to expect the frequency response function of dynamic pressure in the top chamber (air spring) with respect to that in the bottom chamber (external chamber). Comparison with the experimental data supports the validity of the present estimation procedures. Also, the dynamic mechanism of the damping effects particularly in a low frequency range is investigated through this experimental endeavor.

Frequency Domain Pattern Recognition Method for Damage Detection of a Steel Bridge (강교량의 손상감지를 위한 주파수 영역 패턴인식 기법)

  • Lee, Jung Whee;Kim, Sung Kon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.1-11
    • /
    • 2005
  • A bi-level damage detection algorithm that utilizes the dynamic responses of the structure as input and neural network (NN) as pattern classifier is presented. Signal anomaly index (SAI) is proposed to express the amount of changes in the shape of frequency response functions (FRF) or strain frequency response function (SFRF). SAI is calculated using the acceleration and dynamic strain responses acquired from intact and damaged states of the structure. In a bi-level damage identification algorithm, the presence of damage is first identified from the magnitude of the SAI value, then the location of the damage is identified using the pattern recognition capability of NN. The proposed algorithm is applied to an experimental model bridge to demonstrate the feasibility of the algorithm. Numerically simulated signals are used for training the NN, and experimentally-acquired signals are used to test the NN. The results of this example application suggest that the SAI-based pattern recognition approach may be applied to the structural health monitoring system for a real bridge.

Characteristics of Forced Vibration System According to the Frequency of External Exciting Force (외부 가진력의 주파수에 따른 강제진동시스템의 특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.130-137
    • /
    • 2021
  • The characteristics of forced vibration by an external excitation force having a frequency were analyzed according to the amplitude and frequency of the excitation force. To obtain displacement, velocity, and acceleration, numerical analysis was performed to obtain the frequency response, and in particular, each FRF(Frequency Response Function) was analyzed to reveal the location of the system natural frequency and excitation frequency in the frequency domain. In the vibration model caused by external excitation, the natural frequency and distribution of the surrounding excitation mode in displacement, velocity and acceleration FRF. The FRF was also shown in the power spectrum and FRF of real and imaginary parts. The external excitation force was approximated with the excitation force of a sine wave by giving the amplitude and frequency, the mode generated by this excitation force could be distinguished. After numerical analysis by changing the equivalent mass, damping and stiffness, the forced vibration response characteristics by external excitation force were systematically analyzed.

The Improvements of Vehicle Vibration Characteristics Using Modal Contribution (모우드 기여도 분석을 이용한 차량의 진동특성 개선)

  • 안지훈;지상현;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • This paper presents modal contribution method to reduce vehicle vibration. Normal mode analysis is performed to obtain modal vector matrix. The proposed method uses this modal vector matrix to evaluate forced response of an active mode to the applied engine forces and the rotating force due to wheel unbalance mass. Comparing the responses, of the specific active mode with one another, it can be easily done to determine most contributed mode in the interesting frequency band. Then we can find dominant bushes by the strain energy distribution of the mode. Vibration response is decrease with modification of those bushes.

  • PDF

Dynamic Analysis Of Structures With Nonlinear Joints By Using Substructure Synthesis Method (부분구조 합성법을 이용한 비선형 결합부 구조물의 동적 해석)

  • 이신영;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.324-330
    • /
    • 1990
  • In this study, in order to perform dynamic design of machine tools reasonably and effectively, a method was formulated to be applicable to the damped structures connected by joints having elasticity and damping by using substructure synthesis method. And a nonlinear solution method was proposed and it formulates the nonlinear parts by describing functions and uses the reducing transformation matrix by the substructure synthesis method. The results of frequency response analysis of a machine tool, where an NC lathe was partitioned by three parts of spindle, housing and bed-base part and the nonlinearity of bearing parts between spindle and housing was modelled, showed force dependency of the response.

Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.420-427
    • /
    • 1998
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from strain frequency response functions using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The method can be used to predict strain responses and excitation forces for given excitation forces and responses, respectively. Cracks on a structure can be detected by measuring strian FRFs and comparing them with the original ones.

  • PDF

Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin Eung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

A Comparison on the Resistance and characteristics of Transient response of Grounding Systems under Surge Currents (서지 전류에 의한 접지계의 과도응답 특성 및 접지저항 비교)

  • Shin, D.H.;Kim, Y.;Jung, Chul-Hee;Cho, Dae-Hoon;Kim, Pil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.222-225
    • /
    • 1999
  • This paper presents the surges response of the grounding systems using frequency domain electromagnetic field analysis software package. The frequency and time domain performance of a building grounding systems subjected to a lighting strike is described and discussed. The computed scalar potentials is presented graphically as a function of spatial coordinates. A double exponential lighting surge current is injected at one corner or the building grounding systems. Time-variant response of rod, mesh and kit grounding systems under impulse currents have been obtained. This paper deals with the results of studies on the time variation of ground resistance in three grounding systems.

  • PDF

Finite Element Model Updating and Vibration Analysis of PMDC Motor Rotor System (영구자석형 직류전동기 축계의 유한요소모델 개선과 진동해석)

  • Kim, Y.H.;Ha, J.Y.;Lee, J.G.;Kim, S.H.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • In this paper, finite element modeling was performed for vibration analysis of a rotor system installed in sunroof motor, and analysis process was developed for natural frequency and unbalance response analysis. At the same time, to reduce analysis modeling error caused by the difference between analysis and measured values, finite element model updating was conducted using an optimization algorithm, i.e. hybrid genetic algorithm and simulated annealing (HGASA) method. For this end experimental modal test was carried out and by using the measured frequency response function (FRF), model updating was performed considering both cases where core coil was removed and included. And acceptable result was obtained. Also, dynamic property coefficient of bush bearing which influences vibration response of the rotor system was estimated.

  • PDF