• Title/Summary/Keyword: Frequency Ratio Model

Search Result 794, Processing Time 0.03 seconds

A Study on the Acoustic Analysis Method of the External Ear Canal Using DICOM Images (DICOM 영상을 이용한 외이도 음향해석 방법에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2019
  • This study simulated external ear canal modeling with different external ear canal lengths, vertical flexion angles, and inner/outer diameter ratios using digital imaging and communications in medicine(DICOM) of the head temporal region and measured the acoustic sensitivity. The experiment was performed by increasing the audible frequency for humans by 200 Hz and expressing the frequency constantly transmitted at 1 Pa as the eardrum acoustic volume and presented the measurements by linear and quadratic curve regression analysis. The results showed that the longer the external ear canal length and the higher the ratio of the outer/inner diameter, the faster the acoustic response at lower frequencies. The acoustic sensitivity correlation of the meta-model using regression analysis showed a 77% influence by the external ear canal length and 5% by the external/internal diameter ratio, while the vertical flexion angle did not show a significant relationship. This showed that auditory acoustic sensitivity of humans is a factor that reacts faster at a low frequency when the external ear canal length is longer and when the difference between the outer and inner diameter is higher.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOW OVER A SINGLE CAVITY (단일 공동 주위의 2차원 및 3차원 초음속 난류 유동 분석)

  • Woo C. H.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.51-58
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k-$\omega$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in the cavity. An explicit 4th order Runge-Kutta scheme and an upwind TVD scheme based on the flux vector split with the van Leer limiters are used for time and space discritizations, respectively. The cavity has a L/D ratio of 3 for two-dimensional case, and same L/D and W/D ratio of I for three-dimensional case. The Mach and Reynolds numbers are 1.5 and 450000 respectively. In the three-dimensional flow, the field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follows Rossiter's formula. In the two-dimensional simulation, the self-sustained oscillating flow has more violent fluctuation inside the cavity. The primary fluctuating frequencies of two- and three- dimensional flow agree very well with the 2nd mode of Rossiter's frequency. In the three-dimensional flow, the 1st mode of frequency could be seen.

The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD

  • Tait, M.J.;Isyumov, N.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.235-250
    • /
    • 2004
  • The current study reports the results of an experimental program conducted on a structure fitted with a liquid damper (TLD) and subjected to harmonic excitation. Screens were placed inside the TLD to achieve the required inherent damping. In the first part of the study, reduced scale models of the building-TLD systems were tested under two levels of excitation. The efficiency of the damper was assessed by evaluating the effective damping provided to the structure and comparing it to the optimum effective damping value, provided by a linear tuned mass damper (TMD). An extensive parametric study was then conducted for one of the three models by varying both the excitation amplitude and the tuning ratio, defined as the ratio of the TLD sloshing frequency to the natural frequency of the structure. The effectiveness and robustness of a TLD with screens were assessed. Results indicate that the TLD can be tuned to achieve a robust performance and that its efficiency is not significantly affected by the level of excitation. Finally, the equivalent amplitude dependent TMD model, developed in the companion paper is validated using the system test results.

The Evaluation in Displacement Response of Tapered Tall Buildings to Wind Load (풍하중을 받는 테이퍼 고층건물의 진동변위응답 평가)

  • Cho, Ji-Eun;You, Ki-Pyo;Kim, Jong-Soo;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.101-108
    • /
    • 2005
  • The investigations for mitigating wind-induced excitations of tall buildings have been carried out. The aerodynamic modification of a building shape changing the cross-section with height through tapering, which alters the flow pattern around the building, could reduce wind induced excitations of tall buildings. The fart that a tapered tall building might spread the vortex-shedding over a broad range of frequencies makes more effective for reducing acrosswind responses has been established. In this paper, to investigate the tapering effect for reducing wind-induced responses of a tapered tall building, high-frequency force-balance test was conducted. The six types of building models which have different taper ratio of 2.5%, 5%, 7.5%, 10%, 15% and one basic building model of a square cross-section were tested under the two typical boundary layers representing suburban and urban flow environment. The effect of wind direction was also considered.

  • PDF

Experimental Analysis of Flow Characteristics around Wind-Turbine Blades (풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

Distinction between HAPS and LEO Satellite Communications under Dust and Sand Storms Levels and other Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.382-388
    • /
    • 2022
  • Satellite communication for high altitude platform stations (HAPS) and low earth orbit (LEO) systems suffer from dust and sand (DU&SA) storms in the desert regions such as Saudi Arabia. These attenuations have a distorting effect on signal fidelity at high frequency of operations. This results signal to noise ratio (SNR) to dramatically decreasing and leads to wireless transmission error. The main focus in this paper is to propose common relations between HAPS and LEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three dimensional relationship for HAPS and LEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gaseous effects for different frequency, and propagation angle to provide system operations with a predicted vision of satellite parameters' values. Skillful decision and control system (SD&CS) is proposed to control applied parameters that lead to improve satellite network performance and to get the ultimate receiving wireless signal under bad weather condition.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.