• Title/Summary/Keyword: Frequency Interference

Search Result 1,835, Processing Time 0.025 seconds

Wideband RF Interference Reduction Module

  • Kang, Sanggee;Hong, Heonjin;Chong, Youngjun
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.28-35
    • /
    • 2022
  • Interference always exists between wireless communication systems used in the same frequency band or adjacent frequency bands. In order to deploy a new wireless communication system such as a 5G system, a new frequency band must be allocated to the system. For this purpose, after analyzing interference between the existing system and the new system, a method of setting a frequency guard band or a minimum separation distance has been used as a passive method to limit the interference effect. This paper presents a wideband RF IRM(Interference Reduction Module) that can actively reduce the influence of interference between wireless communication systems. The wideband RF IRM can reduce the interference effects of 5G signals on satellite signals. The principle and structure of the wideband RF IRM are presented. The wideband RF IRM can suppress approximately 20dB of interference signal in 100MHz bandwidth when only interference signal exists. It also shows that when a 5G interference signal of -45dBm/100MHz and a satellite signal of -55dBm/40MHz exist simultaneously at a center frequency of 3.83GHz, about 15dB of 5G interference signal can be reduced in the frequency range covered by the satellite signal. The experimental results demonstrate that the wideband RF IRM can actively reduce the 5G interference signal on the satellite signal and can be used for the purpose of reducing the interference effect in a similar environment.

Emulator for Generating Heterogeneous Interference Signals in the Korean RFID/USN Frequency Band

  • Lee, Sangjoon;Yoon, Hyungoo;Baik, Kyung-Jin;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.254-260
    • /
    • 2018
  • In this study, we suggest an emulator for generating multiple heterogeneous interference signals in the Korean radio frequency identification/ubiquitous sensor network (RFID/USN) frequency band. The proposed emulator uses only one universal software radio peripheral to generate multiple heterogeneous interference signals more economically. Moreover, the physical and media access control parameters can be adjusted in real time using the LabVIEW program, thereby making it possible to create various time-varying interference environments easily. As an example showing the capability of the proposed emulator, multiple interference signals consisting of a frequency-hopping RFID signal and two LoRa signals with different spreading factors were generated. The generated signals were confirmed in both frequency and time domains. From the experimental results, we verified that our emulator could successfully generate multiple heterogeneous interference signals with different frequency and time domain characteristics.

A method for eliminating periodic interference by sampling frequency control of discrete-time notch filter (이산-시간 노치 여파기의 표본화 주파수 제어에 의한 주기성 간섭의 제거방법)

  • 염동홍;안수길
    • 전기의세계
    • /
    • v.31 no.6
    • /
    • pp.450-456
    • /
    • 1982
  • This paper proposes a new method for eliminating periodic interference corrupting a signal. The method proposed herein uses a variable notch filter by sampling frequency control to eliminate the interference. This method is applicable when an auxiliary reference input is available containing the interference alone. The sampling frequency is determined by the fundamental frequency of the periodic interference. Also, this paper proposes a design procedure so that it can be easily applied.

  • PDF

Antenna Polarization Isolation and Resource Control for Frequency Interference Reduction Between Opposite Sectors (대칭섹터 간 주파수 간섭 감소를 위한 편파분리 및 자원 제어 방법)

  • Seo, Sung Won;Lee, Sung Min;Kim, Yong Sin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1014-1023
    • /
    • 2015
  • This paper presents the method of antenna polarization isolation and resource control for frequency interference reduction due to the frequency reuse between opposite sectors. We have examined the frequency interference between opposite sectors which is occurred by operating base station for reducing frequency interference. The base station has a frequency reusing structure in opposite sector. So, the base station can make a in-band frequency interference. In order to minimize frequency interference, we proposed two methods. The first is the antenna polarization isolation method. The CINR was improved to 27dB from 17dB when using the antenna polarization isolation. The second is resource control which is the method for lining up the RF power and limiting RF power control range of each link. In this paper, by using the proposed two methods, presents a scheme that reduces frequency interference in the frequency reusing structure.

An Adaptive Narrowband Interference Excision Filter with Low Signal Loss for GPS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1234-1238
    • /
    • 2005
  • As the low power GPS signal is susceptible to interference, interference can seriously degrade the performance of GPS receiver. This paper designs a ANIEF(Adaptive Narrowband Interference Excision in Frequency domain) filter that removes narrow band interferences with low signal loss. This filter uses the pre-correlation technique and attempts to filter out the interference in the frequency domain. The interference excision performance of the designed filter is evaluated for various interferences using the ANIEF filter inserted GPS software receiver and the interference generator. Interferences considered in this paper are single-tone CWI(Continuous Wave Interference), multi-tones CWI, pulsed CWI, and swept CWI. The narrowband interference excision filter in frequency domain is very effective against various interferences and the strong interference with a simple structure. However, the signal power loss is unavoidable while transforming. In this paper, the hamming window and overlap technique are adopted to reduce the signal power loss. Finally, the interference excision performance and the reduced signal power loss of the ANIEF filter are shown.

  • PDF

Study on Efficient Frequency Guard Band Decision Rule for Interference Avoidance

  • Park, Woo-Chul;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jae-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.182-187
    • /
    • 2009
  • When we assign frequency resources to a new radio service, the existing services need not to be interfered with by the new service. Therefore, when we make a frequency assignment, a guard band is necessary to separate adjacent frequency bands so that both can transmit simultaneously without interfering with each other. In this paper, we propose an efficient frequency guard band decision rule for avoiding interference between radio services. The guard band is established based on the probability of interference in the previously arranged scenario. The interference probability is calculated using the spectrum engineering advanced Monte Carlo(MC) analysis tool(SEAMCAT). After applying the proposed algorithm to set up the frequency guard band, we can decide on the guard band appropriately because the result satisfies the predefined criterion.

An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents (접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석)

  • Lee, Bok-Hee;Cho, Yong-Seung;Choi, Jong-Hyuk;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.

On-Frequency Repeater using Interference Cancellation System (적응성 간섭잡음제거기를 이용한 동일 주파수 중계기)

  • 김선진;이제영;이종철;김종헌;이병제;김남영
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.177-181
    • /
    • 2002
  • In this paper, the cancellation or suppression of the feedback interference from Tx antenna using the same frequency is studied. The major problems on the wireless communication system using the same frequency or on-frequency repeater (OFR) are the coupling and isolation between Rx and Tx antenna. In order to increase the isolation between Rx and Tx antenna and to Prevent the self-oscillation of the receiver system, this paper is verified the possibility of the application of interference cancellation system and proposed the design method of the OFR using interference cancellation system.

  • PDF

The hybrid method of Listen-Before-Talk and Adaptive Frequency Hopping for coexistence of Bluetooth and WLAN (블루투스 및 무선 LAN 시스템의 동시지원을 위해 Listen-Before-Talk 기법을 결합한 Adaptive Frequency Hopping 방식의 제안)

  • ;Bin Zhen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.706-718
    • /
    • 2002
  • In bluetooth system, there are two kinds of interference. One is the frequency static interference, for example 802.11 direct sequence, the interferer uses fixed frequency band. Another is frequency dynamic interference, for example other piconets or 802.11 frequency hopping, the interferer uses dynamic frequency channel and cant be estimated. In this paper we introduce a novel solution of hybrid method of Listen-Before-Talk (LBT) and Adaptive Frequency Hopping (AFH) to address the coexistence of bluetooth and Direct Sequence of wireless local area network (WLAN). Before any bluetooth packet transmission, in the turn around time of the current slot, both the sender and receiver sense the channel whether there is any transmission going on or not. If the channel is busy, packet transmission is withdrawn until another chance. This is the LBT in Bluetooth. Because of asymmetry sense ability of WLAN and bluetooth, AFH is introduced to combat the left front-edge packet collisions. In monitor period of AFH, LBT is performed to label the channels with static interference. Then, all the labeled noisy channels are not used in the followed bluetooth frequency hopping. In this way, both the frequency dynamic and frequency static interference are effectively mitigated. We evaluate the solution through packet collision analysis and a detail realistic simulation with IP traffic. It turns out that the hybrid method can combat both the frequency dynamic and frequency static interference. The packet collision analysis shows it almost doubles the maximal system aggregate throughput. The realistic simulation shows it has the least packet loss.

Cooperative Interference Mitigation Using Fractional Frequency Reuse and Intercell Spatial Demultiplexing

  • Chang, Jae-Won;Heo, Jun;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • For mobile wireless systems with full frequency reuse, co-channel interference near the cell coverage boundaries has a significant impact on the signal reception performance. This paper addresses an approach to efficiently mitigate the effect of downlink co-channel interference when multi-antenna terminals are used in cellular environments, by proposing a signal detection strategy combined with a system-level coordination for dynamic frequency reuse. We demonstrate the utilization of multi-antennas to perform spatial demultiplexing of both the desired signal and interfering signals from adjacent cells results in significant improvement of spectral efficiency compared to the maximal ratio combining (MRC) performance, especially when an appropriate frequency reuse based on the traffic loading condition is coordinated among cells. Both analytic expressions for the capacity and experimental results using the adaptive modulation and coding (AMC) are used to confirm the performance gain. The robustness of the proposed scheme against varying operational conditions such as the channel estimation error and shadowing effects are also verified by simulation results.