• Title/Summary/Keyword: Frequency Filtering

Search Result 706, Processing Time 0.028 seconds

Hardware Design of High Performance ALF in HEVC Encoder for Efficient Filter Coefficient Estimation (효율적인 필터 계수 추출을 위한 HEVC 부호화기의 고성능 ALF 하드웨어 설계)

  • Shin, Seungyong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.379-385
    • /
    • 2015
  • This paper proposes the hardware architecture of high performance ALF(Adaptive Loop Filter) for efficient filter coefficient estimation. In order to make the original image which has high resolution and high quality into highly compressed image effectively and also, subjective image quality into improved image, the ALF technique of HEVC performs a filtering by estimating filter coefficients using statistical characteristics of image. The proposed ALF hardware architecture is designed with a 2-step pipelined architecture for a reduction in performance cycle by analysing an operation relationship of Cholesky decomposition for the filter coefficient estimation. Also, in the operation process of the Cholesky decomposition, a square root operation is designed to reduce logic area, computation time and computation complexity by using the multiplexer, subtracter and comparator. The proposed hardware architecture is designed using Xilinx ISE 14.3 Vertex-7 XC7VCX485T FPGA device and can support 4K UHD@40fps in real time at a maximum operation frequency of 186MHz.

Digital Image Watermarking Scheme in the Singular Vector Domain (특이 벡터 영역에서 디지털 영상 워터마킹 방법)

  • Lee, Juck Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.122-128
    • /
    • 2015
  • As multimedia information is spread over cyber networks, problems such as protection of legal rights and original proof of an information owner raise recently. Various image transformations of DCT, DFT and DWT have been used to embed a watermark as a token of ownership. Recently, SVD being used in the field of numerical analysis is additionally applied to the watermarking methods. A watermarking method is proposed in this paper using Gabor cosine and sine transform as well as SVD for embedding and extraction of watermarks for digital images. After delivering attacks such as noise addition, space transformation, filtering and compression on watermarked images, watermark extraction algorithm is performed using the proposed GCST-SVD method. Normalized correlation values are calculated to measure the similarity between embedded watermark and extracted one as the index of watermark performance. Also visual inspection for the extracted watermark images has been done. Watermark images are inserted into the lowest vertical ac frequency band. From the experimental results, the proposed watermarking method using the singular vectors of SVD shows large correlation values of 0.9 or more and visual features of an embedded watermark for various attacks.

Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter (Kalman Filter 복수 적용을 통한 Backprojection 기반 FMCW-SAR의 영상복원 품질평가)

  • Song, Juyoung;Kim, Duk-jin;Hwang, Ji-hwan;An, Sangho;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1349-1359
    • /
    • 2021
  • Acquisition of precise position and velocity information of GNSS-INS (Global Navigation Satellite System; Inertial Navigation System) sensors in obtaining SAR SLC (Single Look Complex) images from raw data using BPA (Backprojection Algorithm) was regarded decisive. Several studies on BPA were accompanied by Kalman Filter for sensor noise oppression, but often implemented once where insufficient information was given to determine whether the filtering was effectively applied. Multiple operation of Kalman Filter on GNSS-INS sensor was presented in order to assess the effective order of sensor noise calibration. FMCW (Frequency Modulated Continuous Wave)-SAR raw data was collected from twice airborne experiments whose GNSS-INS information was practically and repeatedly filtered via Kalman Filter. It was driven that the FMCW-SAR raw data with diverse path information could derive different order of Kalman Filter with optimum operation of BPA image restoration.

Noise Removal with Spatial Characteristics in Mixed Noise Environment (복합 잡음 환경에서 공간적 특성을 고려한 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.254-260
    • /
    • 2019
  • Recently, the importance of signal processing has become gradually significant, as the frequency of video media increases in various fields. However, numerous kinds of noise generated in the transmission and reception processes can possibly affect the signal information, and the noise removal is for that reason essential as a preprocessing step. In this paper, we propose an algorithm to remove the mixed noise which is composed of impulse noise and AWGN. This algorithm is used for image restoration by noise judgment for efficient noise removal in a complex noise environment, and the noise is removed by considering spatial characteristics and pixel variations. Simulation results show that unlike existing methods, the algorithm has excellent noise cancellation characteristics by minimizing both noise effects and consequently eliminating the mixed noise; for objective judgment, we compared and analyzed the data using PSNR and profile.

Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment (AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1310-1316
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, the importance of video processing such as object tracking, medical imaging, and object recognition is increasing. In particular, the noise reduction technology used in the preprocessing process demands the ability to effectively remove noise and maintain detailed features as the importance of system images increases. In this paper, we provide a modified weight filter based on pixel matching in an AWGN environment. The proposed algorithm uses a pixel matching method to maintain high-frequency components in which the pixel value of the image changes significantly, detects areas with highly relevant patterns in the peripheral area, and matches pixels required for output calculation. Classify the values. The final output is obtained by calculating the weight according to the similarity and spatial distance between the matching pixels with the center pixel in order to consider the edge component in the filtering process.

Physiological Data Monitoring of Physical Exertion of Construction Workers Using Exoskeleton in Varied Temperatures

  • Ibrahim, Abdullahi;Okpala, Ifeanyi;Nnaji, Chukwuma
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1242-1242
    • /
    • 2022
  • Annually, several construction workers fall ill, are injured, or die due to heat-related exposure. The prevalence of work-related heat illness may rise and become an issue for workers operating in temperate climates, given the increase in frequency and intensity of heatwaves in the US. An increase in temperature negatively impacts physical exertion levels and mental state, thereby increasing the potential of accidents on the job site. To reduce the impact of heat stress on workers, it is critical to develop and implement measures for monitoring physical exertion levels and mental state in hot conditions. For this, limited studies have evaluated the utility of wearable biosensors in measuring physical exertion and mental workload in hot conditions. In addition, most studies focus solely on male participants, with little to no reference to female workers who may be exposed to greater heat stress risk. Therefore, this study aims to develop a process for objective and continuous assessment of worker physical exertion and mental workload using wearable biosensors. Physiological data were collected from eight (four male and four female) participants performing a simulated drilling task at 92oF and about 50% humidity level. After removing signal artifacts from the data using multiple filtering processes, the data was compared to a perceived muscle exertion scale and mental workload scale. Results indicate that biosensors' features can effectively detect the change in worker physical and mental state in hot conditions. Therefore, wearable biosensors provide a feasible and effective opportunity to continuously assess worker physical exertion and mental workload.

  • PDF

Numerical Verification of HWAW Method in the Near Field (근거리장에서 HWAW 기법의 수치해석적 검증)

  • Bang, Eun-Seok;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.5-17
    • /
    • 2007
  • Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

Syntactic and Semantic Disambiguation for Interpretation of Numerals in the Information Retrieval (정보 검색을 위한 숫자의 해석에 관한 구문적.의미적 판별 기법)

  • Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.65-71
    • /
    • 2009
  • Natural language processing is necessary in order to efficiently perform filtering tremendous information produced in information retrieval of world wide web. This paper suggested an algorithm for meaning of numerals in the text. The algorithm for meaning of numerals utilized context-free grammars with the chart parsing technique, interpreted affixes connected with the numerals and was designed to disambiguate their meanings systematically supported by the n-gram based words. And the algorithm was designed to use POS (part-of-speech) taggers, to automatically recognize restriction conditions of trigram words, and to gradually disambiguate the meaning of the numerals. This research performed experiment for the suggested system of the numeral interpretation. The result showed that the frequency-proportional method recognized the numerals with 86.3% accuracy and the condition-proportional method with 82.8% accuracy.

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map (정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석)

  • Shin, Jaewook;Lee, Joonsung;Kim, Min-Oh;Choi, Narae;Seo, Jin Keun;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2014
  • Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.