• Title/Summary/Keyword: Frequency Converter

Search Result 1,874, Processing Time 0.037 seconds

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

The characteristic of circuit of LC-type series and LLCC-Type parallel High frequency parallel resonant converter (LC 직렬형 및 LLCC 병렬형 고주파 공진형 컨버터의 회로 특성)

  • 차인수;박혜암
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.71-75
    • /
    • 1993
  • The Modeling analysis and design of a high frequency LC-type series and LLCC-type parallel resonant converter oprating in the continous conduction is presented. The state-plane diagram representation of the converter response gives and good insight into the converter operation. A set of characterisric frequency are plotted which design parameters can be obtained.

  • PDF

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

Design of a Digital PWM Controller for a Soft Switching SEPIC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • This paper presents analysis, modeling, and design of a low-harmonic, isolated, active-clamped SEPIC for future avionics applications. Simpler converter dynamics, high switching frequency, zero voltage-Transition-PWM switching, and a single-layer transformer construction result. This paper describes complete design of a digital controller for a high-frequency switching power supply. Guidelines for the minimum required resolution of the analog-to-digital converter, the pulse-width modulator, and the fixed-point computational unit is derived. A design example based on a SEPIC converter operating at the high switching frequency is presented. The controller design is based on direct digital design approach and standard root-locus techniques.

High-Frequency Forward Transformer Linked PWM DC-DC Power Converter with Zero Voltage Switching and Zero Current Switching Bridge Legs

  • Moisseev, Serguei;Hamada, Satoshi;Ishitobi, Manabu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.278-287
    • /
    • 2002
  • A novel zero-voltage and zero-current switching PWM DC-DC converter with lowered conduction losses is presented in this paper. A new double two-switch forward high frequency transformer type soft-switching converter topology is developed to minimize circulating currents occurs during freewheeling period. This converter has advantages as less number of the components, simple control principle under constant operation frequency, free of transformer Imbalance effect. The principle of operation is illustrated with steady-state analysis. Moreover, the effectiveness of the proposed converter topology is verified by implementation of a 500w-100kHz breadboard using IGBTs.

A Study on the 300KHz ZVS Full Bridge PWM Converter (300KHz ZVS Full Bridge PWM 컨버터에 관한 연구)

  • 주형준;김의찬;최재동;손승찬;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.111-115
    • /
    • 1997
  • This Paper is concerned on developing DC-DC converter using ZVS-FB-PWM Converter. The converter output is 28V and regulated by phase shift control methode. MOSFET is used by the main switching device and high frequency transfomer is made for operating at 300㎑ switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF

An Efficiency Improvement Method for Single-phase Boost Converter by Reducing Switching Loss (스위칭 손실 감소에 의한 단상 부스트 컨버터의 효율개선)

  • Kim Jong-Su;Oh Sae-Gin;Park Keun-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.96-103
    • /
    • 2006
  • This paper proposes a new technique for improving the efficiency of single phase high frequency switch mode boost converter. This converter includes an additional boost converter that follows the main hish frequency switching device. The additional converter, which is controlled at lower frequencies, bypasses almost all the current in the main switch and the high frequency switching loss is greatly reduced. Both switching devices are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate, and the maximum switching frequency can be limited without any clock generator. The converter works cooperatively in high efficiency and acts as though it were a conventional high frequency switch mode converter with one switching device. This paper describes the proposed converter configuration, design, and discusses the steady state performance concerning the switching loss reduction and efficiency improvement. and the proposed method is verified by computer simulation.

A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS (ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.741-749
    • /
    • 2021
  • This paper presents the current-fed type LLC AC to DC high frequency resonant converter capable of ZVZCS(Zero-Voltage and Zero-Current Switching). The current-fed type LLC AC to DC high frequency resonant converter proposed in this paper could operate not only in ZVS(Zero-Voltage Switching) operation by connecting the resonant capacitors(C1, C2) in parallel across the switching devices but also in ZCS(Zero-Current Switching) operation of the secondary diode. The ZVS and ZCS operations can reduce the turn-on loss of the switching devices and the turn-off loss of the secondary diodes, respectively. The circuit analysis of current-fed type LLC AC to DC high frequency resonant converter proposed in this paper is addressed generally by adopting the normalized parameters. The operating characteristics of proposed LLC AC to DC high frequency resonant converter were also evaluated by using the normalized control parameters such as the normalized control frequency(μ), the normalized load resistor(λ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of proposed LLC AC to DC high frequency resonant converter is suggested, and the validity of the theoretical analysis is confirmed using the experimental results and PSIM simulation.

A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link

  • Fathy, Khairy;Kwon, Soon-Kurl
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.124-131
    • /
    • 2007
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM resonant DC-DC converter with two simple auxiliary commutation lossless inductor snubbers is presented. The operation principle of this converter is described using the switching mode equivalent circuits. This newly developed multi resonant DC-DC converter can regulate its DC output AC power under a principle of constant frequency edge-resonant soft switching commutation by an asymmetrical PWM duty cycle control scheme. The high frequency power regulation and actual power characteristics of the proposed soft switching PWM resonant DC-DC converter are evaluated and discussed. The operating performances of the newly proposed soft switching inverter are represented based on simulation results from an applications point of view.

Electronic Ballast Design Driven by Low Frequency Square Wave for High Power MHL (고출력 MHL용 구형저주파 구동 방식의 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • In this paper, We proposed electronic ballast that applys Buck Converter operation principle to Full-Bridge inverter. The proposed ballast consists of an EMI Filter, a full-bridge rectifier, a passive power factor correction (PFC) circuit and a full-bridge inverter. The passive PFC is used and a Full-Bridge inverter operation by two frequency. High Side and Low Side switch was driven by high frequency and low frequency and realized buck Converter's operation. The lamp is driven by Low Frequency square wave to avoid Acoustic Resonance. Also, bulk of inductor is reduced by high frequency switching. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 700W MHL.