• 제목/요약/키워드: Frequency Converter

검색결과 1,874건 처리시간 0.026초

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.

변압기 영향을 포함한 고정주파수 LCL형 DC-DC 컨버터 해석 (Analysis of A Fixed Frequency LCL-type DC-DC Converter Including the Effect of High-Frequency Transformer)

  • 박상은;차한주
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.81-87
    • /
    • 2016
  • An LCL-type Isolated dc-dc converter operating for constant output voltage is analyzed, including the effect of a high frequency transformer using ac complex circuit approximation. Its solution is derived and is used to obtain the characteristics of the proposed converter. The analyses show through converter modeling, phasor diagram and gain comparison that inclusion of a high frequency transformer results in introduction of magnetizing inductance and leakage inductances at conventional LCL dc-dc converter with ideal transformer. The theoretical and simulation results are presented in case of the wide variations in input voltage and load current in detail. Analysis and simulation results observed that introduction of a transformer in the dc-dc converter had considerable effect on the performance, especially in the case of low output voltage and large load.

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.

전기자동차용 1MHz LDC에 적합한 새로운 2단계 전력변환기 (A Novel Two-Stage Power Converter suitable for 1MHz-LDC of Electric Vehicles.)

  • Tuan, Tran Manh;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.51-53
    • /
    • 2018
  • The Low Voltage DC-DC converters (LDCs) of the Electric Vehicles require high power density and high efficiency operation over the wide range of load and input voltage variations. This paper introduces a novel topology which combines three 1 MHz Half-Bridge (HB) LLC resonant converters and an Inverting Buck-Boost (IBB) converter to adjust the output voltage without frequency modulation. The switching frequency of the proposed converter is fixed at 1MHz to achieve a constant frequency operation for the resonant converter. In the proposed topology GaN FETs and planar transformers are employed to optimize the converter operation at high frequency. A 1 MHz/1.8 kW prototype converter is built to verify the feasibility and the validity of the proposed LDC topology.

  • PDF

DC-DC 콘버어터의 고주파화와 안정성 (High Frequency Switching and Stability of DC-DC Converters)

  • 김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.824-827
    • /
    • 1987
  • The miniturization of a DC-DC converter circuit in connection with the stability is investigated in this paper. As both the capacitance of the smoothing capacitor and the inductance of the reactor are reduced by raising the switching frequency, it is known that the stability of the buck converter declines with the switching frequency but the buck-boost converter has a nearly uniform stability. Furthermore, that in the frequency region above a certain switching frequency the buck-boost converter is suitable for the miniturization of circuit is cleared.

  • PDF

넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터 (High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range)

  • 주형익;양정우;조강타;한상규;사공석진
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.

주파수 제어에 의한 직렬 공진형 컨버터의 특성 해석 (The Analysis of a Series Resonant Converter with Frequency Control)

  • 이윤종;김철진
    • 대한전기학회논문지
    • /
    • 제39권6호
    • /
    • pp.557-567
    • /
    • 1990
  • This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter with frequency control. The natural commutation of all switch element is realized when the switching frequency is below the resonant frequency of the tank circuit, and the analysis is limited to only this region. For the analysis method, state plane technique is adopted, and each operation mode is defined from normalized switching frequency Fsn. Under this condition, circuit performance is analyzed ideally. The physical characteristics of the series resonant converter is easily grasped by this analysis method with frequency control and this analytical results are directly applicable to the actual converter design. The validity of the analysis is verified by comparing with experimental results and the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis.

  • PDF

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

A 40-W Flyback Converter with Dual-Operation Modes for Improved Light Load Efficiency

  • Kang, Jin-Gyu;Park, Jeongpyo;Gong, Jung-Chul;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.493-500
    • /
    • 2015
  • A flyback converter operates with either pulse width modulation (PWM) or pulse frequency modulation (PFM) control scheme depending on the load current. At light load condition, PFM control is employed to reduce the switching frequency and thereby minimize the switching power loss. For heavier load, PWM control is used to regulate the output voltage of the flyback converter. The flyback controller has been implemented in a $0.35{\mu}m$ BCDMOS process and applied to a 40-W flyback converter. The light-load power efficiency of the flyback converter is improved up to 5.7-% comparing with the one operating with a fixed switching frequency.